×

Boundedness of the \(p\)-primary torsion of the Brauer group of an abelian variety. (English) Zbl 1541.14034

Summary: We prove that the \(p^\infty \)-torsion of the transcendental Brauer group of an abelian variety over a finitely generated field of characteristic \(p>0\) is bounded. This answers a (variant of a) question asked by A. N. Skorobogatov and Y. G. Zarhin [J. Algebr. Geom. 17, No. 3, 481–502 (2008; Zbl 1157.14008)] for abelian varieties. To do this, we prove a ‘flat Tate conjecture’ for divisors. We also study other geometric Galois-invariant \(p^\infty \)-torsion classes of the Brauer group which are not in the transcendental Brauer group. These classes, in contrast with our main theorem, can be infinitely \(p\)-divisible. We explain how the existence of these \(p\)-divisible towers is naturally related to the failure of surjectivity of specialisation morphisms of Néron-Severi groups in characteristic \(p\).

MSC:

14F22 Brauer groups of schemes
19E15 Algebraic cycles and motivic cohomology (\(K\)-theoretic aspects)
14F42 Motivic cohomology; motivic homotopy theory
14C25 Algebraic cycles
14F30 \(p\)-adic cohomology, crystalline cohomology

Citations:

Zbl 1157.14008

References:

[1] Ambrosi, A., Specialization of Néron-Severi groups in positive characteristic, Ann. Sci. Éc. Norm. Supér. (4)56 (2023), 665-711. · Zbl 1541.14035
[2] Ambrosi, A. and D’Addezio, M., Maximal tori of monodromy groups of \(F\)-isocrystals and an application to abelian varieties, Algebr. Geom. 18 (2022), 633-650. · Zbl 1507.14028
[3] André, Y., Pour une théorie inconditionnelle des motifs, Publ. Math. Inst. Hautes Études Sci. 83 (1996), 5-49. · Zbl 0874.14010
[4] Artin, M. and Mazur, B., Formal groups arising from algebraic varieties, Ann. Sci. Éc. Norm. Supér. (4)10 (1977), 87-132. · Zbl 0351.14023
[5] Berthelot, P., Cohomologie cristalline des schémas de caractéristique p > 0, , vol. 407 (Springer, 1974). · Zbl 0298.14012
[6] Berthelot, P., Breen, L. and Messing, W., Théorie de Dieudonné cristalline II, , vol. 930 (Springer, 1982). · Zbl 0516.14015
[7] Bragg, D. and Olsson, M., Representability of cohomology of finite flat abelian group schemes, Preprint (2021), arXiv:2107.11492.
[8] Bhatt, B. and Scholze, P., The pro-étale topology for schemes, Astérisque369 (2015), 99-201. · Zbl 1351.19001
[9] Caraiani, A. and Scholze, P., On the generic part of the cohomology of compact unitary Shimura varieties, Ann. of Math. (2)186 (2017), 649-766. · Zbl 1401.11108
[10] Christensen, A., Specialization of Néron-Severi groups in characteristic \(p\), Preprint (2018), arXiv:1810.06550.
[11] Colliot-Thélène, J.-L. and Skorobogatov, A. N., Descente galoisienne sur le groupe de Brauer, J. Reine Angew. Math. 682 (2013), 141-165. · Zbl 1317.14042
[12] Colliot-Thélène, J.-L. and Skorobogatov, A. N., The Brauer-Grothendieck group (Springer, 2021). · Zbl 1490.14001
[13] Crew, R., \(F\)-isocrystals and \(p\)-adic representations, Proc. Sympos. Pure Math. 46 (1987), 111-138. · Zbl 0639.14011
[14] D’Addezio, M., Parabolicity conjecture of \(F\)-isocrystals, Ann. of Math. (2)198 (2023), 619-656. · Zbl 07734888
[15] De Jong, A. J., Homomorphisms of Barsotti-Tate groups and crystals in positive characteristic, Invent. Math. 134 (1998), 301-333. · Zbl 0929.14029
[16] Grothendieck, A., Le groupe de Brauer III: Exemples et compléments, in Dix Exposés ur la Cohomologie des Schémas (North-Holland, 1968), 88-188. · Zbl 0198.25901
[17] Illusie, L., Complexe de de Rham-Witt et cohomologie cristalline, Ann. Sci. Éc. Norm. Supér. (4)12 (1979), 501-661. · Zbl 0436.14007
[18] Illusie, L., Finiteness, duality and Künneth theorems in the cohomology of the de Rham-Witt complex, in Algebraic geometry, , vol. 1016 (Springer, 1983), 20-72. · Zbl 0538.14013
[19] Katz, N. M., P-adic properties of modular schemes and modular forms, Modular functions of one variable III (Springer, 1973), 69-190. · Zbl 0271.10033
[20] Katz, N. M., Slope filtration of \(f\)-crystals, Astérisque63 (1979), 113-163. · Zbl 0426.14007
[21] Katz, N. M., Space filling curves over finite fields, Math. Res. Lett. 6 (1999), 613-624. · Zbl 1016.11022
[22] Lau, E., Smoothness of the truncated display functor, J. Amer. Math. Soc. 26 (2013), 129-165. · Zbl 1273.14040
[23] Maulik, D. and Poonen, B., Néron-Severi groups under specialization, Duke Math. J. 161 (2012), 2167-2206. · Zbl 1248.14011
[24] Milne, J., Values of zeta functions of varieties over finite fields, Amer. J. Math. 108 (1986), 297-360. · Zbl 0611.14020
[25] Orr, M., Skorobogatov, A. N. and Zarhin, Y., On uniformity conjectures for abelian varieties and K3 surfaces, Amer. J. Math. 143 (2021), 1665-1702. · Zbl 1486.14060
[26] Skorobogatov, A. N. and Zarhin, Y. G., A finiteness theorem for the Brauer group of abelian varieties and K3 surfaces, J. Algebraic Geom. 17 (2008), 481-502. · Zbl 1157.14008
[27] The Stacks Project Authors, Stacks Project (2023), http://stacks.math.columbia.edu.
[28] Tate, J., Endomorphisms of abelian varieties over finite fields, Invent. Math. 2 (1966), 134-144. · Zbl 0147.20303
[29] Tate, J., Conjectures on algebraic cycles in \(\ell \)-adic cohomology, in Motives, Proceedings of Symposia in Pure Mathematics, vol. 55 (American Mathematical Society, 1994), 71-83. · Zbl 0814.14009
[30] Ulmer, D., Curves and Jacobians over function fields, in Arithmetic geometry over global function fields, (Birkhäuser-Springer, 2014), 283-337. · Zbl 1384.11077
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.