×

On conformal factor in the conformal Killing equation on the 2-symmetric five-dimensional indecomposable Lorentzian manifold. (Russian. English summary) Zbl 1538.53024

Summary: Conformally Killing vector fields are a natural generalization of Killing vector fields and play an important role in the study of the group of conformal transformations of a manifold, Ricci flows on a manifold, and the theory of Ricci solitons. Pseudo-Riemannian symmetric spaces of order \(k\), where \(k \geq 2\), arise in the study of pseudo-Riemannian geometry and in physics. At present, they have been investigated in cases \(k=2, 3\) by D. V. Alekseevsky and A. S. Galaev [J. Geom. Phys. 61, No. 12, 2331–2340 (2011; Zbl 1235.53055)] and others. In the case of low dimensions, these spaces and Killing vector fields on them were studied by D. N. Oskorbin and E. D. Rodionov [Sib. Math. J. 60, No. 5, 911–915 (2019; Zbl 1430.53057); translation from Sib. Mat. Zh. 60, No. 5, 1165–1170 (2019)], and I. V. Ernst. Ricci solitons are a generalization of Einstein’s metrics on (pseudo) Riemannian manifolds, and their equation has been studied on various classes of manifolds by many mathematicians. In particular, D. N. Oskorbin and E. D. Rodionov [loc. cit.] found a general solution of the Ricci soliton equation on 2-symmetric Lorentzian manifolds of low dimension, and proved the local solvability of this equation in the class of 3-symmetric Lorentzian manifolds. For a single Einstein constant in the Ricci soliton equation the Killing vector fields make it possible to find the general solution of the Ricci soliton equation corresponding to the given constant. However, for different values of the Einstein constant, conformally Killing vector fields play the role of Killing fields. Therefore, there is a need to study them. In this paper, we investigate the conformal analogue of the Killing equation on five-dimensional 2-symmetric indecomposable Lorentzian manifolds, and investigate the properties of the conformal factor of the conformal analogue of the Killing equation on them. Nontrivial examples of conformally Killing vector fields with a variable conformal factor are constructed.

MSC:

53B30 Local differential geometry of Lorentz metrics, indefinite metrics
53C18 Conformal structures on manifolds
53C50 Global differential geometry of Lorentz manifolds, manifolds with indefinite metrics
53E20 Ricci flows

References:

[1] Berestovskii V. N., Nikonorov Yu. G., Riemannian Manifolds and Homogeneous Geodesics, Springer Monographs in Mathematics, Springer, Cham, 2020, xxii+482 pp. · Zbl 1460.53001 · doi:10.1007/978-3-030-56658-6
[2] Oskorbin, D. N. and Rodionov, E. D., “Ricci Solitons and Killing Fields on Generalized Cahen-Wallach Manifolds”, Siberian Mathematical Journal, 60 (2019), 911-915 · Zbl 1430.53057 · doi:10.1134/S0037446619050136
[3] Andreeva, T. A., Balashchenko, V. V. and Oskorbin, D. N., “Conformal Killing Fields on Symmetric Lorentzian Manifolds of Low Dimension”, Proceedings of the Seminar on Geometry and Mathematical Modeling, 6 (2020), 19-25 (in Russian)
[4] Hall G. S., Symmetries and Curvature Structure in General Relativity, World Sci. Lect. Notes Phys., 46, 2004, 440 pp. · Zbl 1054.83001 · doi:10.1142/1729
[5] Andreeva, T. A., Balashchenko, V. V., Oskorbin D. N. and Rodionov E. D., “Conformally Killing Fields on 2-Symmetric Five-Dimensional Lorentzian Manifolds”, Izvestiya of Altai State University, 117:1 (2021), 68-71 (in Russian) · doi:10.14258/izvasu(2021)1-11
[6] Cahen M., Wallach N., “Lorentzian symmetric spaces”, Bull. Amer. Math. Soc., 76:3 (1970), 585-592 · Zbl 0194.53202 · doi:10.1090/S0002-9904-1970-12448-X
[7] Galaev A. S., Alexeevskii D. V., “Two-symmetric Lorentzian manifolds”, J. Geometry Phys., 61:12 (2011), 2331-2340 · Zbl 1235.53055 · doi:10.1016/j.geomphys.2011.07.005
[8] Blanco O. F., Sanchez M., Senovilla J. M., “Structure of second-order symmetric Lorentzian manifold”, J. Eur. Math. Soc, 15:2 (2013), 595-634 · Zbl 1288.53069 · doi:10.4171/JEMS/368
[9] Galaev A. S., Leistner T., “Holonomy groups of Lorentzian manifolds: classification, examples, and applications”, Recent Developments in Pseudo-Riemannian Geometry, 2008, 53-96 · Zbl 1152.53036 · doi:10.4171/051
[10] Walker A. G., “On parallel fields of partially null vector spaces”, Quart. J. Math., os-20:1 (1949), 135-145 · Zbl 0033.13101 · doi:10.1093/qmath/os-20.1.135
[11] Brozos-Vázquez M., García-Río E., Gilkey P., Nikčević S., Vázquez-Lorenzo R., The geometry of Walker manifolds, Synthesis Lect. Math. Statistics, Morgan & Claypool Publ, 2009, 179 pp. · Zbl 1206.53039 · doi:10.2200/S00197ED1V01Y200906MAS005
[12] Wu H., “On the de Rham decomposition theorem”, Illinois J. Math., 8:2 (1964), 291-311 · Zbl 0122.40005 · doi:10.1215/ijm/1256059674
[13] Hall G. S., “Conformal symmetries and fixed points in spacetime”, J. Math. Phys., 31:5 (1989), 1198-1207 · Zbl 0715.53043 · doi:10.1063/1.528753
[14] Blau M., O’Loughlin M., “Homogeneous plane waves”, Nuclear Phys., 654:1-2 (2003), 135-176 · Zbl 1010.83058 · doi:10.1016/S0550-3213(03)00055-5
[15] Fedoryuk, M. V., “Eyri Functions”, Encyclopaedia of Mathematics, v. 5, ed. I. M. Vinogradov, Sovetskaya Entsiklopediya Publisher, M., 1985, 939-941
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.