×

Kyle-back models with risk aversion and non-Gaussian beliefs. (English) Zbl 1538.60118

Summary: We show that the problem of existence of equilibrium in Kyle’s continuous time insider trading model can be tackled by considering a forward-backward system coupled via an optimal transport type constraint at maturity. The forward component is a stochastic differential equation representing an endogenously determined state variable and the backward component is a quasilinear parabolic equation representing the pricing function. By obtaining a stochastic representation for the solution of such a system, we show the well-posedness of solutions and study the properties of the equilibrium obtained for small enough risk aversion parameter. In our model, the insider has exponential type utility and the belief of the market maker on the distribution of the price at final time can be non-Gaussian.

MSC:

60H30 Applications of stochastic analysis (to PDEs, etc.)
60J60 Diffusion processes
91B44 Economics of information

References:

[1] AASE, K. K., BJULAND, T. and ØKSENDAL, B. (2012). Partially informed noise traders. Math. Financ. Econ. 6 93-104. Digital Object Identifier: 10.1007/s11579-012-0075-4 Google Scholar: Lookup Link MathSciNet: MR2966355 · Zbl 1264.91063 · doi:10.1007/s11579-012-0075-4
[2] BACK, K. (1992). Insider trading in continuous time. Rev. Financ. Stud. 5 387-409.
[3] BACK, K. (1993). Asymmetric information and options. Rev. Financ. Stud. 6 435-472.
[4] BACK, K., COCQUEMAS, F., EKREN, I. and LIOUI, A. (2021). Optimal transport and risk aversion in Kyle’s model of informed trading. Preprint. Available at arXiv:2006.09518.
[5] BACK, K., COLLIN-DUFRESNE, P., FOS, V., LI, T. and LJUNGQVIST, A. (2018). Activism, strategic trading, and liquidity. Econometrica 86 1431-1463. Digital Object Identifier: 10.3982/ECTA14917 Google Scholar: Lookup Link MathSciNet: MR3843494 · Zbl 1396.91794 · doi:10.3982/ECTA14917
[6] BACK, K. and PEDERSEN, H. (1998). Long-lived information and intraday patterns. J. Financ. Mark. 1 385-402.
[7] BARUCH, S. (2002). Insider trading and risk aversion. J. Financ. Mark. 5 451-464.
[8] BIAGINI, F., HU, Y., MEYER-BRANDIS, T. and ØKSENDAL, B. (2012). Insider trading equilibrium in a market with memory. Math. Financ. Econ. 6 229-247. Digital Object Identifier: 10.1007/s11579-012-0065-6 Google Scholar: Lookup Link MathSciNet: MR2966732 · Zbl 1262.91156 · doi:10.1007/s11579-012-0065-6
[9] BOUCHARD, B., LOEPER, G., SONER, H. M. and ZHOU, C. (2019). Second-order stochastic target problems with generalized market impact. SIAM J. Control Optim. 57 4125-4149. Digital Object Identifier: 10.1137/18M1196078 Google Scholar: Lookup Link MathSciNet: MR4040789 · Zbl 1430.91106 · doi:10.1137/18M1196078
[10] Brenier, Y. (1991). Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math. 44 375-417. Digital Object Identifier: 10.1002/cpa.3160440402 Google Scholar: Lookup Link MathSciNet: MR1100809 MathSciNet: MR1660740 · Zbl 0738.46011 · doi:10.1002/cpa.3160440402
[11] CAFFARELLI, L. A. (2000). Monotonicity properties of optimal transportation and the FKG and related inequalities. Comm. Math. Phys. 214 547-563. Digital Object Identifier: 10.1007/s002200000257 Google Scholar: Lookup Link MathSciNet: MR1800860 · Zbl 0978.60107 · doi:10.1007/s002200000257
[12] CAMPI, L. and ÇETIN, U. (2007). Insider trading in an equilibrium model with default: A passage from reduced-form to structural modelling. Finance Stoch. 11 591-602. Digital Object Identifier: 10.1007/s00780-007-0038-4 Google Scholar: Lookup Link MathSciNet: MR2335835 · Zbl 1142.93033 · doi:10.1007/s00780-007-0038-4
[13] CAMPI, L., ÇETIN, U. and DANILOVA, A. (2011). Dynamic Markov bridges motivated by models of insider trading. Stochastic Process. Appl. 121 534-567. Digital Object Identifier: 10.1016/j.spa.2010.11.004 Google Scholar: Lookup Link MathSciNet: MR2763095 · Zbl 1225.60072 · doi:10.1016/j.spa.2010.11.004
[14] ÇETIN, U. and DANILOVA, A. (2016). Markovian Nash equilibrium in financial markets with asymmetric information and related forward-backward systems. Ann. Appl. Probab. 26 1996-2029. Digital Object Identifier: 10.1214/15-AAP1138 Google Scholar: Lookup Link MathSciNet: MR3543888 · Zbl 1353.91050 · doi:10.1214/15-AAP1138
[15] ÇETIN, U. and DANILOVA, A. (2021). On pricing rules and optimal strategies in general Kyle-Back models. SIAM J. Control Optim. 59 3973-3998. Digital Object Identifier: 10.1137/20M1319267 Google Scholar: Lookup Link MathSciNet: MR4330733 · Zbl 1475.91336 · doi:10.1137/20M1319267
[16] CHIPOT, M. and RODRIGUES, J.-F. (1988). Comparison and stability of solutions to a class of quasilinear parabolic problems. Proc. Roy. Soc. Edinburgh Sect. A 110 275-285. Digital Object Identifier: 10.1017/S0308210500022265 Google Scholar: Lookup Link MathSciNet: MR0974743 · Zbl 0669.35052 · doi:10.1017/S0308210500022265
[17] CHO, K.-H. (2003). Continuous auctions and insider trading: Uniqueness and risk aversion. Finance Stoch. 7 47-71. Digital Object Identifier: 10.1007/s007800200078 Google Scholar: Lookup Link MathSciNet: MR1954387 · Zbl 1066.91057 · doi:10.1007/s007800200078
[18] COCLITE, G. M. and HOLDEN, H. (2005). Stability of solutions of quasilinear parabolic equations. J. Math. Anal. Appl. 308 221-239. Digital Object Identifier: 10.1016/j.jmaa.2005.01.026 Google Scholar: Lookup Link MathSciNet: MR2142415 · Zbl 1078.35047 · doi:10.1016/j.jmaa.2005.01.026
[19] COLLIN-DUFRESNE, P. and FOS, V. (2016). Insider trading, stochastic liquidity, and equilibrium prices. Econometrica 84 1441-1475. Digital Object Identifier: 10.3982/ECTA10789 Google Scholar: Lookup Link MathSciNet: MR3537161 · Zbl 1420.91544 · doi:10.3982/ECTA10789
[20] Cont, R. and Fournié, D.-A. (2013). Functional Itô calculus and stochastic integral representation of martingales. Ann. Probab. 41 109-133. Digital Object Identifier: 10.1214/11-AOP721 Google Scholar: Lookup Link MathSciNet: MR3059194 · Zbl 1272.60031 · doi:10.1214/11-AOP721
[21] CORCUERA, J. M., DI NUNNO, G. and FAJARDO, J. (2019). Kyle equilibrium under random price pressure. Decis. Econ. Finance 42 77-101. Digital Object Identifier: 10.1007/s10203-019-00231-4 Google Scholar: Lookup Link MathSciNet: MR3995352 · Zbl 1426.91315 · doi:10.1007/s10203-019-00231-4
[22] CORCUERA, J. M., FARKAS, G., DI NUNNO, G. and ØKSENDAL, B. (2010). Kyle-Back’s model with Lévy noise. Preprint Series. Pure Mathematics http://urn.nb.no/URN:NBN:no-8076.
[23] DI NUNNO, G. and CORCUERA, J. M. (2020). Path-dependent Kyle equilibrium model. Preprint. Available at arXiv:2006.06395.
[24] Dupire, B. (2019). Functional Itô calculus. Quant. Finance 19 721-729. Digital Object Identifier: 10.1080/14697688.2019.1575974 Google Scholar: Lookup Link MathSciNet: MR3939653 · Zbl 1420.91458 · doi:10.1080/14697688.2019.1575974
[25] Ekren, I., Touzi, N. and Zhang, J. (2016). Viscosity solutions of fully nonlinear parabolic path dependent PDEs: Part I. Ann. Probab. 44 1212-1253. Digital Object Identifier: 10.1214/14-AOP999 Google Scholar: Lookup Link MathSciNet: MR3474470 · Zbl 1375.35250 · doi:10.1214/14-AOP999
[26] GARCIA DEL MOLINO, L. C., MASTROMATTEO, I., BENZAQUEN, M. and BOUCHAUD, J.-P. (2020). The multivariate Kyle model: More is different. SIAM J. Financial Math. 11 327-357. Digital Object Identifier: 10.1137/18M1231997 Google Scholar: Lookup Link MathSciNet: MR4080943 · Zbl 1443.91162 · doi:10.1137/18M1231997
[27] HOLDEN, C. W. and SUBRAHMANYAM, A. (1994). Risk aversion, imperfect competition, and long-lived information. Econom. Lett. 44 181-190. · Zbl 0806.90014
[28] KOLESNIKOV, A. V. (2013). On Sobolev regularity of mass transport and transportation inequalities. Theory Probab. Appl. 57 243-264. Digital Object Identifier: 10.1137/S0040585X97985947 Google Scholar: Lookup Link MathSciNet: MR3201654 · Zbl 1279.60032 · doi:10.1137/S0040585X97985947
[29] KUSANO, T. (1963). On the maximum principle for quasi-linear parabolic equations of the second order. Proc. Jpn. Acad. 39 211-216. MathSciNet: MR0164149 · Zbl 0125.05405
[30] KYLE, A. S. (1985). Continuous auctions and insider trading. Econometrica 53 1315-1335. · Zbl 0571.90010
[31] LADYZHENSKAIA, O. A., SOLONNIKOV, V. A. and URAL’TSEVA, N. N. (1988). Linear and Quasi-Linear Equations of Parabolic Type 23. Am. Math. Soc., Providence.
[32] LASSERRE, G. (2004). Asymmetric information and imperfect competition in a continuous time multivariate security model. Finance Stoch. 8 285-309. Digital Object Identifier: 10.1007/s00780-003-0118-z Google Scholar: Lookup Link MathSciNet: MR2048832 · Zbl 1060.91092 · doi:10.1007/s00780-003-0118-z
[33] LIEBERMAN, G. M. (1996). Second Order Parabolic Differential Equations. World Scientific, River Edge, NJ. Digital Object Identifier: 10.1142/3302 Google Scholar: Lookup Link MathSciNet: MR1465184 · Zbl 0884.35001 · doi:10.1142/3302
[34] LOEPER, G. (2018). Option pricing with linear market impact and nonlinear Black-Scholes equations. Ann. Appl. Probab. 28 2664-2726. Digital Object Identifier: 10.1214/17-AAP1367 Google Scholar: Lookup Link MathSciNet: MR3847970 · Zbl 1417.91511 · doi:10.1214/17-AAP1367
[35] McCann, R. J. (1995). Existence and uniqueness of monotone measure-preserving maps. Duke Math. J. 80 309-323. Digital Object Identifier: 10.1215/S0012-7094-95-08013-2 Google Scholar: Lookup Link MathSciNet: MR1369395 · Zbl 0873.28009 · doi:10.1215/S0012-7094-95-08013-2
[36] SHI, P. (2013). Study of new models for insider trading and impulse control Ph.D. thesis London School of Economics and Political Science (LSE).
[37] TAGUCHI, D. and TANAKA, A. (2020). Probability density function of SDEs with unbounded and path-dependent drift coefficient. Stochastic Process. Appl. 130 5243-5289. Digital Object Identifier: 10.1016/j.spa.2020.03.006 Google Scholar: Lookup Link MathSciNet: MR4127329 · Zbl 07242827 · doi:10.1016/j.spa.2020.03.006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.