×

A fast GPU Monte Carlo radiative heat transfer implementation for coupling with direct numerical simulation. (English) Zbl 07785515

Summary: We implemented a fast Reciprocal Monte Carlo algorithm to accurately solve radiative heat transfer in turbulent flows of non-grey participating media that can be coupled to fully resolved turbulent flows, namely to Direct Numerical Simulation (DNS). The spectrally varying absorption coefficient is treated in a narrow-band fashion with a correlated-\(k\) distribution. The implementation is verified with analytical solutions and validated with results from literature and line-by-line Monte Carlo computations. The method is implemented on GPU with a thorough attention to memory transfer and computational efficiency. The bottlenecks that dominate the computational expenses are addressed, and several techniques are proposed to optimize the GPU execution. By implementing the proposed algorithmic accelerations, while maintaining the same accuracy, a speed-up of up to 3 orders of magnitude can be achieved.

MSC:

80Axx Thermodynamics and heat transfer
65Cxx Probabilistic methods, stochastic differential equations
76Fxx Turbulence

Software:

CUDA; HITRAN; HITEMP

References:

[1] Modest, M., Radiative Heat Transfer (2013)
[2] Sakurai, A.; Matsubara, K.; Takakuwa, K.; Kanbayashi, R., Radiation effects on mixed turbulent natural and forced convection in a horizontal channel using direct numerical simulation. Int. J. Heat Mass Transf., 2539-2548 (2012)
[3] Coelho, P.; Teerling, O.; Roekaerts, D., Spectral radiative effects and turbulence/radiation interaction in a non-luminous turbulent jet diffusion flame. Combust. Flame, 75-91 (2003)
[4] Deshmukh, K.; Modest, M.; Haworth, D., Direct numerical simulation of turbulence-radiation interactions in a statistically one-dimensional nonpremixed system. J. Quant. Spectrosc. Radiat. Transf., 2391-2400 (2008)
[5] Ghosh, S.; Friedrich, R.; Stemmer, C., Contrasting turbulence-radiation interaction in supersonic channel and pipe flow. Int. J. Heat Fluid Flow, 24-34 (2014)
[6] Ghosh, S.; Friedrich, R., Effects of radiative heat transfer on the turbulence structure in inert and reacting mixing layers. Phys. Fluids (2015)
[7] Gupta, A.; Modest, M.; Haworth, D., Large-eddy simulation of turbulence-radiation interactions in a turbulent planar channel flow. J. Heat Transf., 6, 1-8 (2009)
[8] Silvestri, S.; Patel, A.; Roekaerts, D.; Pecnik, R., Turbulence radiation interaction in channel flow with various optical depths. J. Fluid Mech., 359-384 (2018) · Zbl 1419.76290
[9] Wu, Y.; Modest, M.; Haworth, D., A high-order photon monte carlo method for radiative transfer in direct numerical simulation. J. Comput. Phys., 898-922 (2007) · Zbl 1115.65005
[10] Zhang, Y.; Vicquelin, R.; Gicquel, O.; Taine, J., Physical study of radiation effects on the boundary layer structure in a turbulent channel flow. Int. J. Heat Mass Transf., 642-666 (2013)
[11] Vicquelin, R.; Zhang, Y.; Gicquel, O.; Taine, J., Effects of radiation in turbulent channel flow: analysis of coupled direct numerical simulations. J. Fluid Mech., 360-401 (2014)
[12] Owens, J.; Luebke, D.; Govindaraju, N.; Harris, M.; Krüger, J.; Lefohn, A.; Purcell, T., A survey of general-purpose computation on graphics hardware. State of the Art Report. Eurographics, 21-51 (2005)
[13] NVIDIA Corporation, NVIDIA CUDA C Programming Guide, 2011.
[14] Gpu machine learning
[15] Gpu medical imaging
[16] Nobile, M.; Cazzaniga, P.; Tangherloni, A.; Besozzi, D., Graphics processing units in bioinformatics, computational biology and systems biology. Brief. Bioinform., 5, 870-885 (2016)
[17] Khajeh-Saeed, A.; Perot, J., Direct numerical simulation of turbulence using gpu accelerated supercomputers. J. Comput. Phys., 241-257 (2013)
[18] Salvadore, F.; Bernardini, M.; Botti, M., Gpu accelerated flow solver for direct numerical simulation of turbulent flows. J. Comput. Phys., 129-142 (2013)
[19] V. Cvetanoska, T. Stojanovski, Using high performance computing and monte carlo simulation for pricing american options, in: The 9th Conference for Informatics and Information Technology.
[20] Liang, Y.; Xing, X.; Li, Y., A gpu-based large-scale monte carlo simulation method for systems with long-range interactions. J. Comput. Phys., 252-268 (2017) · Zbl 1415.65008
[21] Humphrey, A.; Sunderland, D.; Harman, T.; Berzins, M., Radiative heat transfer calculation on 16384 gpus using a reverse monte carlo ray tracing approach with adaptive mesh refinement, 1222-1231
[22] Heymann, F.; Siebenmorgen, R., GPU-based Monte Carlo dust radiative transfer scheme applied to active galactic nuclei. Astrophys. J., 27 (2012)
[23] Tesse, L.; Dupoirieux, F.; Zamuner, B.; Taine, J., Radiative transfer in real gases using reciprocal and forward monte carlo methods and a correlated-k approach. Int. J. Heat Mass Transf., 2797-2814 (2002) · Zbl 1028.80504
[24] Cherkaoui, M.; Dufresne, J.; Fournier, R.; Grandpeix, J.; Lahellec, A., Monte Carlo simulation of radiation in gases with narrow-band model and a net-exchange formulation. J. Heat Transf., 401-407 (1996)
[25] Zhang, Y.; Gicquel, O.; Taine, J., Optimized emission-based reciprocity monte carlo method to speed up computation in complex systems. Int. J. Heat Mass Transf., 8172-8177 (2012)
[26] Soufiani, A.; Taine, J., High temperature gas radiative property parameters of statistical narrow-band model for \(H_2\) O, \(CO_2\) and co, and correlated-k model for \(H_2O\) and \(CO_2\). Int. J. Heat Mass Transf., 4, 987-991 (1996)
[27] Rothman, L.; Gordon, I.; Barbe, A.; Benner, D.; Bernath, P.; Birk, M., The HITRAN 2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf., 4-50 (2013)
[28] Rothman, L.; Gordon, I.; Barber, R.; Dothe, H.; Gamache, R.; Goldman, A.; Perevalov, V.; Tashkun, S.; Tennyson, J., HITEMP, the high-temperature molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf., 2139-2150 (2010)
[29] Sakurai, A.; Song, T.; Maruyama, S.; Kim, H., Comparison of radiation element method and discrete ordinates interpolation method applied to three-dimensional radiative heat transfer. Numer. Heat Transf., 2, 259-264 (2005)
[30] Kim, T.; Menart, J.; Lee, H., Nongrey radiative gas analyses using the S-N discrete ordinates method. J. Heat Transf., 946-952 (1991)
[31] Humphrey, A.; Harman, T.; Berzins, M.; Smith, P., A scalable algorithm for radiative heat transfer using reverse Monte Carlo ray tracing, 212-230
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.