×

Tensor calculus in spherical coordinates using Jacobi polynomials. I: Mathematical analysis and derivations. (English) Zbl 07785508

Summary: This paper presents a method for accurate and efficient computations on scalar, vector and tensor fields in three-dimensional spherical polar coordinates. The method uses spin-weighted spherical harmonics in the angular directions and rescaled Jacobi polynomials in the radial direction. For the 2-sphere, spin-weighted harmonics allow for automating calculations in a fashion as similar to Fourier series as possible. Derivative operators act as wavenumber multiplication on a set of spectral coefficients. After transforming the angular directions, a set of orthogonal tensor rotations put the radially dependent spectral coefficients into individual spaces each obeying a particular regularity condition at the origin. These regularity spaces have remarkably simple properties under standard vector-calculus operations, such as gradient and divergence. We use a hierarchy of rescaled Jacobi polynomials for a basis on these regularity spaces. It is possible to select the Jacobi-polynomial parameters such that all relevant operators act in a minimally banded way. Altogether, the geometric structure allows for the accurate and efficient solution of general partial differential equations in the unit ball.

MSC:

65Lxx Numerical methods for ordinary differential equations
65Dxx Numerical approximation and computational geometry (primarily algorithms)
65Nxx Numerical methods for partial differential equations, boundary value problems

References:

[1] Beyer, F.; Daszuta, B.; Frauendiener, J.; Whale, B., Numerical evolutions of fields on the 2-sphere using a spectral method based on spin-weighted spherical harmonics. Class. Quantum Gravity (2014) · Zbl 1291.83019
[2] Boyd, J. P., Chebyshev and Fourier Spectral Methods (2001), Dover · Zbl 0994.65128
[3] Boyd, J. P.; Yu, F., Comparing seven spectral methods for interpolation and for solving the Poisson equation in a disk: Zernike polynomials, Logan-Shepp ridge polynomials, Chebyshev-Fourier series, cylindrical Robert functions, Bessel-Fourier expansions, square-to-disk conformal mapping and radial basis functions. J. Comput. Phys., 1408-1438 (2011) · Zbl 1210.65192
[4] Burns, K. J.; Vasil, G. M.; Oishi, J. S.; Lecoanet, D.; Brown, B. P., Dedalus: flexible framework for spectrally solving differential equations
[5] Coutsias, E. A.; Hagstrom, T.; Torres, D., An efficient spectral method for ordinary differential equations with rational function coefficients. Math. Comput., 611-635 (1996) · Zbl 0846.65037
[6] Charalambides, M.; Waleffe, F., Gegenbauer tau methods with and without spurious eigenvalues. SIAM J. Numer. Anal., 48-68 (2008) · Zbl 1201.65133
[7] Dawkins, P. T.; Dunbar, S. R.; Douglass, R. W., The origin and nature of spurious eigenvalues in the spectral tau method. J. Comput. Phys., 441-462 (1998) · Zbl 0924.65077
[8] EI-Daou, M. K.; Ortiz, E. L., The tau method as an analytic tool in the discussion of equivalence results across numerical methods. Computing, 365-376 (1998) · Zbl 0908.65072
[9] Doha, E. H.; Abd-Elhameed, W. M., Efficient spectral-Galerkin algorithms for direct solution of second-order equations using ultraspherical polynomials. SIAM J. Sci. Comput., 548-571 (2002) · Zbl 1020.65088
[10] Doha, E. H.; Bhrawy, A. H., Efficient spectral-Galerkin algorithms for direct solution for second-order differential equations using Jacobi polynomials. Numer. Algorithms, 137-164 (2006) · Zbl 1103.65119
[11] Doha, E.; Abd-Elhameed, W., Efficient spectral ultraspherical-dual-Petrov-Galerkin algorithms for the direct solution of \((2 n + 1)\) th-order linear differential equations. Math. Comput. Simul., 3221-3242 (2009) · Zbl 1169.65326
[12] Dunkl, C. F.; Xu, Y., Orthogonal Polynomials of Several Variables (2014), Cambridge University Press · Zbl 1317.33001
[13] Eastwood, M.; Tod, P., Edth – a differential operator on the sphere. Math. Proc. Camb. Philos. Soc., 317-330 (1982) · Zbl 0511.53026
[14] Featherstone, N. A.; Hindman, B. W., The spectral amplitude of stellar convection and its scaling in the high-Rayleigh-number regime. Astrophys. J., 818 (2016)
[15] Gardner, D. R.; Trogden, S. A.; Douglass, R. W., A modified tau spectral method that eliminates spurious eigenvalues. J. Comput. Phys., 137-167 (1989) · Zbl 0661.65084
[16] Gelfand, I. M.; Shapiro, Z. Y., Representations of the group of rotations in three-dimensional space and their applications. Am. Math. Soc. Transl., 207-316 (1956) · Zbl 0070.25902
[17] Greengard, L., Spectral integration and two-point boundary value problems. SIAM J. Numer. Anal., 1071-1080 (1991) · Zbl 0731.65064
[18] Hale, N.; Townsend, A., A fast, simple, and stable Chebyshev-Legendre transform using an asymptotic formula. SIAM J. Sci. Comput., A148-A167 (2014) · Zbl 1290.65018
[19] Hollerbach, R.; Nore, C.; Marti, P.; Vantieghem, S.; Luddens, F.; Léorat, J., Parity-breaking flows in precessing spherical containers. Phys. Rev. E (2013)
[20] Homma, Y., Bochner-Weitzenböck formulas and curvature actions on Riemannian manifolds. Trans. Am. Math. Soc., 87-114 (2006) · Zbl 1079.53026
[21] James, R. W., New tensor spherical harmonics, for application to the partial differential equations of mathematical physics. Philos. Trans. R. Soc. Lond., 195-221 (1976) · Zbl 0323.76021
[22] Julien, K.; Watson, M., Efficient multi-dimensional solution of PDEs using Chebyshev spectral methods. J. Comput. Phys., 1480-1503 (2009) · Zbl 1166.65325
[23] Koornwinder, T., Two-variable analogues of the classical orthogonal polynomials. Theory Appl. Spec. Funct., 435-495 (1975) · Zbl 0326.33002
[24] Kostelec, P. J.; Maslen, D. K.; Healy, D. M.; Rockmore, D. N., Computational harmonic analysis for tensor fields on the two-sphere. J. Comput. Phys., 514-535 (2000) · Zbl 0979.65016
[25] Lanczos, C., Trigonometric interpolation of empirical and analytic functions. J. Math. Phys., 123-199 (1938) · Zbl 0020.01301
[26] Livermore, P. W., Galerkin orthogonal polynomials. J. Comput. Phys., 2046-2060 (2010) · Zbl 1185.65138
[27] Li, K.; Livermore, P. W.; Jackson, A., An optimal Galerkin scheme to solve the kinematic dynamo eigenvalue problem in a full sphere. J. Comput. Phys., 8666-8683 (2010) · Zbl 1220.78120
[28] Livermore, P. W.; Ierley, G. R., Quasi-\( L^p\) norm orthogonal Galerkin expansions in sums of Jacobi polynomials. Numer. Algorithms, 533-569 (2010) · Zbl 1197.65027
[29] Livermore, P. W.; Jones, C. A.; Worland, S. J., Spectral radial basis functions for full sphere computations. J. Comput. Phys., 1209-1224 (2007) · Zbl 1128.65016
[30] Marti, P.; Jackson, A., A fully spectral methodology for magnetohydrodynamic calculations in a whole sphere. J. Comput. Phys., 403-422 (2016) · Zbl 1349.76900
[31] Marti, P.; Schaeffer, N.; Hollerbach, R.; Cébron, D.; Nore, C.; Luddens, F.; Guermond, J.-L.; Aubert, J.; Takehiro, S.; Sasaki, Y.; Hayashi, Y.-Y.; Simitev, R.; Busse, F.; Vantieghem, S.; Jackson, A., Full sphere hydrodynamic and dynamo benchmarks. Geophys. J. Int., 119-134 (2014)
[32] Matsushima, T.; Marcus, P., A spectral method for polar coordinates. J. Comput. Phys., 365-374 (1995) · Zbl 0842.65051
[33] McFadden, G. B.; Murray, B. T.; Boisvert, R. F., Elimination of spurious eigenvalues in the Chebyshev tau spectral method. J. Comput. Phys., 228-239 (1990) · Zbl 0717.65063
[34] Mickelin, O.; Stomka, J.; Burns, K. J.; Lecoanet, D.; Vasil, G. M.; Faria, L. M.; Dunkel, J., Anomalous chained turbulence in actively driven flows on spheres. Phys. Rev. Lett. (2018)
[35] Morse, P. M.; Feshbach, H., Methods of Theoretical Physics (1946), McGraw-Hill: McGraw-Hill New York
[36] Muite, B. K., A numerical comparison of Chebyshev methods for solving fourth order semilinear initial boundary value problems. J. Comput. Appl. Math., 317-342 (2010) · Zbl 1188.65140
[37] Newman, E. T.; Penrose, R., Note on the Bondi-Metzner-Sachs group. J. Math. Phys., 863-870 (1966)
[38] Oishi, J. S.; Brown, B. P.; Burns, K. J.; Lecoanet, D.; Vasil, G. M., Perspectives on reproducibility and sustainability of open-source scientific software from seven years of the Dedalus project
[39] Olver, F. W.J.; Lozier, D. W.; Boisvert, R. F.; Clark, C. W., NIST Handbook of Mathematical Functions (2010), Cambridge University Press · Zbl 1198.00002
[40] Olver, S.; Townsend, A., A fast and well-conditioned spectral method. SIAM Rev., 462-489 (2013) · Zbl 1273.65182
[41] Olver, S.; Townsend, A.; Vasil, G. M., Recurrence relations for a family of orthogonal polynomials on a triangle · Zbl 1482.33008
[42] Olver, S.; Townsend, A., A practical framework for infinite-dimensional linear algebra, 57-62
[43] Ortiz, E. L., The tau method. SIAM J. Numer. Anal., 480-492 (1969) · Zbl 0195.45701
[44] Orszag, S. A., Fourier series on spheres. Mon. Weather Rev., 56-75 (1974)
[45] Phinney, R. A.; Buridge, R., Representation of the elastic-gravitational excitation of a spherical earth model by generalized spherical harmonics. Geophys. J. R. Astron. Soc., 451-487 (1973) · Zbl 0287.73065
[46] Reinecke, M.; Seljebotn, D. S., Libsharp — spherical harmonic transforms revisited. Astron. Astrophys. (2013)
[47] Rubinstein, R.; Kurien, S.; Cambon, C., Scalar and tensor spherical harmonics expansion of the velocity correlation in homogeneous anisotropic turbulence. J. Turbul., 1058-1075 (2015)
[48] Slevinsky, R. M., Fast and backward stable transforms between spherical harmonic expansions and bivariate Fourier series. Appl. Comput. Harmon. Anal. (2018), in press
[49] Slevinsky, R. M., On the use of Hahn’s asymptotic formula and stabilized recurrence for a fast, simple, and stable Chebyshev-Jacobi transform. IMA J. Numer. Anal., 102-124 (2018) · Zbl 1477.65275
[50] Slevinsky, R. M.; Montanelli, H.; Du, Q., A spectral method for nonlocal diffusion operators on the sphere · Zbl 1415.65238
[51] Sakai, T.; Redekopp, L., An application of one-sided Jacobi polynomials for spectral modelling of vector fields in polar coordinates. J. Comput. Phys., 7069-7085 (2009) · Zbl 1175.65120
[52] Schaeffer, N., Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations. Geochem. Geophys. Geosyst., 751-758 (2013)
[53] Swarztrauber, P. N., On the spectral approximation of discrete scalar and vector functions on the sphere. SIAM J. Numer. Anal., 934-949 (1977) · Zbl 0442.41018
[54] Swarztrauber, P. N., The vector harmonic transform method for solving partial differential equations in spherical geometry. Mon. Weather Rev., 3415-3437 (1993)
[55] Townsend, A., The race for high order Gauss-Legendre quadrature. SIAM News (March 2015)
[56] Townsend, A.; Wilber, H.; Wright, G., Computing with functions in spherical and polar geometries I. The sphere. SIAM J. Sci. Comput., C403-C425 (2016) · Zbl 1342.65083
[57] Trefethen, L. N., Spectral methods in MATLAB. SIAM (2000) · Zbl 0953.68643
[58] Tygert, M., Fast algorithms for spherical harmonic expansions II. J. Comput. Phys., 4260-4279 (2008) · Zbl 1147.65111
[59] Tygert, M., Fast algorithms for spherical harmonic expansions III. J. Comput. Phys., 6181-6192 (2010) · Zbl 1201.65037
[60] Van Loan, C. F., The ubiquitous Kronecker product. J. Comput. Appl. Math., 85-100 (2000) · Zbl 0966.65039
[61] Vasil, G. M.; Burns, K. J.; Lecoanet, D.; Olver, S.; Brown, B. P.; Oishi, J. S., Tensor calculus in polar coordinates using Jacobi polynomials. J. Comput. Phys., 53-73 (2016) · Zbl 1380.65392
[62] Viswanath, D., Spectral integration of linear boundary value problems. J. Comput. Appl. Math., 159-173 (2015) · Zbl 1330.65035
[63] Wilber, H.; Townsend, A.; Wright, G. B., Computing with functions in spherical and polar geometries II. The disk. SIAM J. Sci. Comput., C238-C262 (2017) · Zbl 1368.65026
[64] Zernike, F., Beugungstheorie des schneidenverfahrens und seiner verbesserten form, der phasenkontrast-methode. Physica, 689-704 (1934) · Zbl 0009.28101
[65] Zebib, A., A Chebyshev method for the solution of boundary value problems. J. Comput. Phys., 443-455 (1984) · Zbl 0541.76036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.