×

Active flux schemes on moving meshes with applications to geometric optics. (English) Zbl 07785513

Summary: Active flux schemes are finite volume schemes that keep track of both point values and averages. The point values are updated using a semi-Lagrangian step, making active flux schemes highly suitable for geometric optics problems on phase space, i.e., to solve Liouville’s equation. We use a semi-discrete version of the active flux scheme. Curved optics lead to moving boundaries in phase space. Therefore, we introduce a novel way of defining the active flux scheme on moving meshes. We show, using scaling arguments as well as numerical experiments, that our scheme outperforms the current industry standard, ray tracing. It has higher accuracy as well as a more favourable time scaling. The numerical experiments demonstrate that the active flux scheme is orders of magnitude more accurate and faster than ray tracing.

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
76Mxx Basic methods in fluid mechanics
35Lxx Hyperbolic equations and hyperbolic systems

Software:

Triangle

References:

[1] Chaves, J., Introduction to Non-Imaging Optics (2008), CRC Press
[2] Winston, R.; Miñano, J. C.; Benítez, P., Nonimaging Optics (2005), Elsevier
[3] Rausch, D.; Herkommer, A. M., Phase space transformations – a different way to understand free-form optical systems
[4] Herkommer, A. M., Phase space optics: an alternate approach to freeform optical systems. Opt. Eng., 3 (2014)
[5] Wolf, K. B., Geometric Optics on Phase Space (2004), Springer · Zbl 1057.78001
[6] van Lith, B. S.; ten Thije Boonkkamp, J. H.M.; IJzerman, W. L.; Tukker, T. W., A novel scheme for Liouville’s equation with a discontinuous Hamiltonian and applications to geometrical optics. J. Sci. Comput., 2, 739-771 (2016) · Zbl 1372.65328
[7] Ii, S.; Shimuta, M.; Xiao, F., A 4th-order and single-cell-based advection scheme on unstructured grids using multi-moments. Comput. Phys. Commun., 1, 17-33 (2005) · Zbl 1196.76042
[8] Ii, S.; Xiao, F., Cip/multi-moment finite volume method for Euler equations: a semi-Lagrangian characteristic formulation. J. Comput. Phys., 2, 849-871 (2007) · Zbl 1124.76039
[9] Ii, S.; Xiao, F., High order multi-moment constrained finite volume method. Part I: Basic formulation. J. Comput. Phys., 10, 3669-3707 (2009) · Zbl 1166.65371
[10] Akoh, R.; Ii, S.; Xiao, F., A cip/multi-moment finite volume method for shallow water equations with source terms. Int. J. Numer. Methods Fluids, 12, 2245-2270 (2007) · Zbl 1135.76035
[11] Akoh, R.; Ii, S.; Xiao, F., A multi-moment finite volume formulation for shallow water equations on unstructured mesh. J. Comput. Phys., 12, 4567-4590 (2010) · Zbl 1305.76060
[12] Nishikawa, H.; Roe, P. L., Third-order active-flux scheme for advection diffusion: hyperbolic diffusion, boundary condition, and Newton solver. Comput. Fluids, 71-81 (2016) · Zbl 1390.76499
[13] Eymann, T. A., Active Flux Schemes (2013), University of Michigan, Ph.D. thesis
[14] Roe, P. L.; Maeng, J. B.; Fan, D., Comparing Active Flux and Discontinuous Galerkin Methods for Compressble Flow (2018), American Institute of Aeronautics and Astronautics
[15] Xie, B.; Ii, S.; Ikebata, A.; Xiao, F., A multi-moment finite volume method for incompressible Navier-Stokes equations on unstructured grids: volume-average/point-value formulation. J. Comput. Phys., 138-162 (2014) · Zbl 1349.76409
[16] Glassner, A. S., An Introduction to Ray Tracing (1991), Academic Press: Academic Press London
[17] K. Ding, K.J. Fidkowski, P.L. Roe, Continuous adjoint based error estimation and r-refinement for the active-flux method, AIAA SciTech.
[18] Jin, P.; Deng, X.; Xiao, F., An ALE formulation for compressible flows based on multi-moment finite volume method. Eng. Appl. Comput. Fluid Mech., 1, 791-809 (2018)
[19] Born, M.; Wolf, E., Principles of Optics (1970), Pergamon Press
[20] Arnold, V. I., Mathematical Methods of Classical Mechanics (1978), Springer-Verlag · Zbl 0386.70001
[21] Durran, D. R., Numerical Methods for Fluid Dynamics with Applications to Geophysics (2010), Springer · Zbl 1214.76001
[22] Minoli, C. A.A.; Kopriva, D. A., Discontinuous Galerkin spectral element approximations on moving meshes. J. Comput. Phys., 5, 1876-1902 (2011) · Zbl 1210.65164
[23] Winters, A. R.; Kopriva, D. A., ALE-DGSEM approximation of wave reflection and transmission from a moving medium. J. Comput. Phys., 233-267 (2014) · Zbl 1349.65494
[24] Gautschi, W., Numerical Analysis (2012), Birkhäuser: Birkhäuser Boston · Zbl 1378.65002
[25] Butcher, J. C., The Numerical Analysis of Ordinary Differential Equations (1987), Wiley · Zbl 0616.65072
[26] Butcher, J., General linear methods for ordinary differential equations. Applied and Computational Mathematics Selected Papers of the Sixth PanAmerican Workshop, July 23-28, 2006, Huatulco-Oaxaca, Mexico. Math. Comput. Simul., 6, 1834-1845 (2009)
[27] Jiang, G.-S.; Shu, C.-W., Efficient implementation of weighted ENO schemes. J. Comput. Phys., 202-228 (1996) · Zbl 0877.65065
[28] Borges, R.; Carmona, M.; Costa, B.; Don, W.-S., An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys., 3191-3211 (2008) · Zbl 1136.65076
[29] van Lith, B. S.; ten Thije Boonkkamp, J. H.M.; IJzerman, W. L., Embedded WENO: a design strategy to improve existing WENO schemes. J. Comput. Phys., 529-549 (2016) · Zbl 1380.65191
[30] Hairer, E.; Wanner, G.; Lubich, C., Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations (2006), Springer · Zbl 1094.65125
[31] Balakrishnan, R.; Ranganathan, K., A Textbook of Graph Theory (2012), Springer · Zbl 1254.05001
[32] Courant, R.; Friedrichs, K.; Lewy, H., Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann., 1, 32-74 (1928) · JFM 54.0486.01
[33] Mattheij, R. M.M.; Rienstra, S. W.; ten Thije Boonkkamp, J. H.M., Partial Differential Equations: Modeling, Analysis, Computation (2005), SIAM · Zbl 1090.35001
[34] Ruppert, J., A Delaunay refinement algorithm for quality 2-dimensional mesh generation. J. Algorithms, 3, 548-585 (1995) · Zbl 0828.68122
[35] Shewchuk, J. R., Triangle: engineering a 2D quality mesh generator and Delaunay triangulator, 203-222
[36] van Lith, B. S., Principles of Computational Illumination Optics (2017), TU/e, Ph.D. thesis
[37] Robert, C. P.; Casella, G., Monte Carlo Statistical Methods (2004), Springer · Zbl 1096.62003
[38] Dunavant, D. A., High degree efficient Gaussian quadrature rules for the triangle. Int. J. Numer. Methods Eng., 1129-1148 (1985) · Zbl 0589.65021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.