×

Stability of traveling waves for the Burgers-Hilbert equation. (English) Zbl 1530.35027

Summary: We consider smooth solutions of the Burgers-Hilbert equation that are a small perturbation \(\delta\) from a global periodic traveling wave with small amplitude \(\epsilon \). We use a modified energy method to prove the existence time of smooth solutions on a time scale of \(1/(\epsilon\delta)\), with \(0<\delta\ll\epsilon\ll1\), and on a time scale of \(\epsilon/\delta^2\), with \(0<\delta\ll\epsilon^2\ll1\). Moreover, we show that the traveling wave exists for an amplitude \(\epsilon\) in the range \((0,\epsilon^*)\), with \(\epsilon^*\sim 0.23\), and fails to exist for \(\epsilon>2/e\).

MSC:

35B35 Stability in context of PDEs
35C07 Traveling wave solutions
35F25 Initial value problems for nonlinear first-order PDEs
35R09 Integro-partial differential equations
76B47 Vortex flows for incompressible inviscid fluids

References:

[1] ; Agmon, Shmuel, Spectral properties of Schrödinger operators and scattering theory, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 2, 2, 151 (1975) · Zbl 0315.47007
[2] ; Arnold, V. I., Geometrical methods in the theory of ordinary differential equations. Grundlehren der Math. Wissenschaften, 250 (1983) · Zbl 0507.34003
[3] 10.1002/cpa.20304 · Zbl 1188.35119 · doi:10.1002/cpa.20304
[4] 10.1137/140957536 · Zbl 1315.35121 · doi:10.1137/140957536
[5] 10.4310/CMS.2017.v15.n1.a7 · Zbl 1356.35066 · doi:10.4310/CMS.2017.v15.n1.a7
[6] 10.1088/0951-7715/23/11/006 · Zbl 1223.35016 · doi:10.1088/0951-7715/23/11/006
[7] 10.2140/apde.2022.15.937 · Zbl 1498.35189 · doi:10.2140/apde.2022.15.937
[8] 10.1016/0022-1236(71)90015-2 · Zbl 0219.46015 · doi:10.1016/0022-1236(71)90015-2
[9] 10.1137/19M1237867 · Zbl 1419.76063 · doi:10.1137/19M1237867
[10] 10.4007/annals.2012.175.2.6 · Zbl 1241.35003 · doi:10.4007/annals.2012.175.2.6
[11] 10.1002/cpa.21535 · Zbl 1314.35100 · doi:10.1002/cpa.21535
[12] 10.1016/j.anihpc.2017.12.002 · Zbl 1406.35355 · doi:10.1016/j.anihpc.2017.12.002
[13] 10.1007/978-3-319-91548-7 · Zbl 1398.65012 · doi:10.1007/978-3-319-91548-7
[14] 10.1137/110849791 · Zbl 1259.35166 · doi:10.1137/110849791
[15] 10.1090/proc/12215 · Zbl 1320.35071 · doi:10.1090/proc/12215
[16] 10.3233/asy-211724 · Zbl 1504.35257 · doi:10.3233/asy-211724
[17] 10.1515/9780691233031 · Zbl 1524.83010 · doi:10.1515/9780691233031
[18] 10.1007/s00222-014-0521-4 · Zbl 1325.35151 · doi:10.1007/s00222-014-0521-4
[19] 10.1090/memo/1227 · Zbl 1435.76002 · doi:10.1090/memo/1227
[20] 10.1007/978-3-642-66282-9 · Zbl 0836.47009 · doi:10.1007/978-3-642-66282-9
[21] 10.1016/j.physd.2014.12.004 · Zbl 1364.35047 · doi:10.1016/j.physd.2014.12.004
[22] 10.1137/19M1257883 · Zbl 1453.35123 · doi:10.1137/19M1257883
[23] 10.1016/0167-2789(83)90134-3 · Zbl 0576.58008 · doi:10.1016/0167-2789(83)90134-3
[24] 10.1137/20M1345207 · Zbl 1486.76015 · doi:10.1137/20M1345207
[25] 10.1002/cpa.3160380516 · Zbl 0597.35101 · doi:10.1002/cpa.3160380516
[26] 10.1137/21M1399348 · Zbl 1475.35207 · doi:10.1137/21M1399348
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.