×

A study on fractional COVID-19 disease model by using Hermite wavelets. (English) Zbl 1534.92085

This paper presents a study on fractional COVID-19 disease model by using Hermite wavelets. It presents essential explanations of fractional calculus and constructs the Hermite wavelets for arbitrary interval and discusses the convergence analysis. The paper develops the operational for Hermite wavelets based on the block pulse functions developed in the paper. It uses Hermite wavelets and Adams-Bashforth-Moulton to solve the COVID-19 infection model. Some numerical simulations are presented to illustrate the theoretical prediction.

MSC:

92D30 Epidemiology
34A08 Fractional ordinary differential equations
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
Full Text: DOI

References:

[1] World Health Organization. Coronavirus disease 2019. https://www.who.int/emergencies/diseases/novel‐coronavirus‐2019; 2020.
[2] Editorial. The continuing 2019‐ncov epidemic threat of novel coronaviruses to global health—the latest 2019 novel coronavirus outbreak in Wuhan, China. Int J Infect Dis. 2020;91(1):264‐266.
[3] LinQ, ZhaoS, GaoD, et al. A conceptual model for the coronavirus disease 2019 (COVID‐19) outbreak in Wuhan, China with individual reaction and governmental action. Int J Infect Dis. 2020;93:211‐216.
[4] ChenT‐M, RuiJ, WangQ‐P, ZhaoZ‐Y, CuiJ‐A, YinL. A mathematical model for simulating the phase‐based transmissibility of a novel coronavirus. Infect Dis Poverty. 2020;9(1):1‐8.
[5] KhanMA, AtanganaA. Modeling the dynamics of novel coronavirus (2019‐ncov) with fractional derivative. Alex Eng J. 2020;59(4):2379‐2389.
[6] World Health Organization. “Who covid‐19 situation report 29”. PDF; 2020.
[7] VolpertV, BanerjeeM, PetrovskiiS. On a quarantine model of coronavirus infection and data analysis. Math Model Nat Pheno. 2020;15:24. · Zbl 1467.92229
[8] KucharskiAJ, RussellTW, DiamondC, et al. Early dynamics of transmission and control of covid‐19: a mathematical modelling study. Lancet Infect Dis. 2020;20(5):553‐558. https://doi.org/10.1016/S1473‐3099(20)30144‐4 · doi:10.1016/S1473‐3099(20)30144‐4
[9] AhmedI, BabaIA, YusufA, KumamP, KumamW. Analysis of Caputo fractional‐order model for COVID‐19 with lockdown. Adv Differ Equ. 2020;2020(1):1‐14. · Zbl 1485.37074
[10] GaoW, BaskonusHM, ShiL. New investigation of bats‐hosts‐reservoir‐people coronavirus model and application to 2019‐ncov system. Adv Differ Equ. 2020;2020(1):1‐11. · Zbl 1485.92129
[11] PodlubnyI. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications. Academic Press: Elsevier; 1998.
[12] KumarS, KumarR, SinghJ, NisarKS, KumarD. An efficient numerical scheme for fractional model of HIV‐1 infection of CD4+ T‐cells with the effect of antiviral drug therapy. Alex Eng J. 2020;59(4):2053‐2064.
[13] KumarS, KumarR, AgarwalRP, SametB. A study of fractional Lotka‐Volterra population model using Haar wavelet and Adams‐Bashforth‐Moulton methods. Math Methods Appl Sci. 2020;43(7):4460‐4471. · Zbl 1447.35359
[14] GhanbariB, KumarS, KumarR. A study of behaviour for immune and tumor cells in immunogenetic tumour model with non‐singular fractional derivative. Chaos Soliton Fract. 2020;133:109619. · Zbl 1483.92060
[15] MohammadiF, MoradiL, BaleanuD, JajarmiA. A hybrid functions numerical scheme for fractional optimal control problems: Application to nonanalytic dynamic systems. J Vib Control. 2018;24(21):5030‐5043.
[16] JajarmiA, BaleanuD. On the fractional optimal control problems with a general derivative operator. Asian J Control. 2019:1‐10. https://doi.org/10.1002/asjc.2282 · Zbl 07878870 · doi:10.1002/asjc.2282
[17] SajjadiSS, BaleanuD, JajarmiA, PirouzHM. A new adaptive synchronization and hyperchaos control of a biological snap oscillator. Chaos Soliton Fract. 2020;138:109919. · Zbl 1490.92005
[18] JajarmiA, YusufA, BaleanuD, IncM. A new fractional HRSV model and its optimal control: a non‐singular operator approach. Physica A‐Stat Mech Appl. 2020;547:123860. · Zbl 07530156
[19] QureshiS, YusufA. Modeling chickenpox disease with fractional derivatives: from caputo to atangana‐baleanu. Chaos Solitons Fractals. 2019;122:111‐118. · Zbl 1448.92331
[20] BabaIA, OlamilekanLI, YusufA, BaleanuD. Analysis of meningitis model: a case study of northern Nigeria. AIMS Bioeng. 2020;7(4):179.
[21] QureshiS, YusufA, Ali ShaikhA, IncM, BaleanuD. Mathematical modeling for adsorption process of dye removal nonlinear equation using power law and exponentially decaying kernels. Chaos: An Interdisciplinary J Nonlinear Sci. 2020;30(4):043106. · Zbl 1437.34012
[22] SrivastavaMH, AhmadH, AhmadI, ThounthongP, KhanNM. Numerical simulation of three‐dimensional fractional‐order convection‐diffusion pdes by a local meshless method. Therm Sci. 2020:210‐210.
[23] AhmadI, AhmadH, ThounthongP, ChuY‐M, CesaranoC. Solution of multi‐term time‐fractional pde models arising in mathematical biology and physics by local meshless method. Symmetry. 2020;12(7):1195.
[24] IncM, KhanMN, AhmadI, YaoS‐W, AhmadH, ThounthongP. Analysing time‐fractional exotic options via efficient local meshless method. Results Phys. 2020;19:103385.
[25] RavichandranC, LogeswariK, PandaSK, NisarKS. On new approach of fractional derivative by Mittag-Leffler kernel to neutral integro‐differential systems with impulsive conditions. Chaos Soliton Fract. 2020;139:110012. · Zbl 1490.34098
[26] ValliammalN, RavichandranC, NisarKS. Solutions to fractional neutral delay differential nonlocal systems. Chaos Soliton Fract. 2020;138:109912. · Zbl 1490.34099
[27] PandaSK, AbdeljawadT, RavichandranC. A complex valued approach to the solutions of Riemann-Liouville integral, atangana‐baleanu integral operator and non‐linear telegraph equation via fixed point method. Chaos Soliton Fract. 2020;130:109439. · Zbl 1489.34112
[28] Solís‐PérezJE, Gómez‐AguilarJF, AtanganaA. A fractional mathematical model of breast cancer competition model. Chaos Soliton Fract. 2019;127:38‐54. · Zbl 1448.92105
[29] UllahS, KhanMA, FarooqM. A new fractional model for the dynamics of the Hepatitis B virus using the Caputo‐Fabrizio derivative. Eur Phys J Plus. 2018;133(6):237.
[30] AgarwalP, SinghR. Modelling of transmission dynamics of nipah virus (niv): a fractional order approach. Physica A: Stat Mech Appl. 2020;547:124243. · Zbl 07530164
[31] KilicmanA, HamdanNI. A fractional order SIR epidemic model for dengue transmission. Chaos Soliton Fract. 2018;114:55‐62. · Zbl 1415.92179
[32] DubeyVP, KumarR, KumarD. Numerical solution of time fractional three‐species food Chain model arising in the realm of mathematical ecology. Int J Biomath. 2020;13(2):2050011. · Zbl 1443.92192
[33] BabaIA, GhanbariB. Existence and uniqueness of solution of a fractional order tuberculosis model. Eur Phys J Plus. 2019;134(10):489.
[34] GaoZ, WoodJG, BurgessMA, MenziesRI, McIntyrePB, McIntyreCR. Models of strategies for control of rubella and congenital Rubella syndrome a 40 year experience from Australia. Vaccine. 2013;31(4):691‐697.
[35] BeylkinG, CoifmanR, RokhlinV. Fast wavelet transforms and numerical algorithms 1. Commun Pure Appl Math. 1991;44(2):141‐183. · Zbl 0722.65022
[36] LakestaniM, RazzaghiM, DehghanM. Semiorthogonal spline wavelets approximation for Fredholm integro‐differential equations. Math Probl Eng. 2006;2006:096184. https://doi.org/10.1155/MPE/2006/96184 · Zbl 1200.65112 · doi:10.1155/MPE/2006/96184
[37] ChuiCK. Wavelets: A Mathematical Tool for Signal Analysis, Vol. 1: SIAM; 1997. · Zbl 0903.94007
[38] ShiralashettiSC, KumbinarasaiahS. Theoretical study on continuous polynomial wavelet bases through wavelet series collocation method for nonlinear Lane-Emden type equations. Appl Math Comput. 2017;315:591‐602. · Zbl 1426.65118
[39] UmerS. Hermite wavelet method for fractional delay differential equations. J Difference Equ. 2014:359093. https://doi.org/10.1155/2014/359093 · doi:10.1155/2014/359093
[40] ur RehmanM, KhanRA. The Legendre wavelet method for solving fractional differential equations. Commun Non Sci Num Simulation. 2011;16(11):4163‐4173. · Zbl 1222.65063
[41] YuttananB, RazzaghiM. Legendre wavelets approach for numerical solutions of distributed order fractional differential equations. Appl Math Model. 2019;70:350‐364. · Zbl 1466.65054
[42] WangJ, XuT‐Z, WeiY‐Q, XieJ‐Q. Numerical simulation for coupled systems of nonlinear fractional order integro‐differential equations via wavelets method. Appl Math Comput. 2018;324:36‐50. · Zbl 1426.65119
[43] KumarS, AhmadianA, KumarR, et al. An efficient numerical method for fractional SIR epidemic model of infectious disease by using Bernstein wavelets. Mathematics. 2020;8(4):558.
[44] MundewadiRA, KumbinarasaiahS. Numerical solution of Abel’s integral equations using Hermite wavelet. Applied Math Non Sci. 2019;4(1):181‐192.
[45] ShiralashettiSC, KumbinarasaiahS. Hermite wavelets operational matrix of integration for the numerical solution of nonlinear singular initial value problems. Alex Eng J. 2018;57(4):2591‐2600.
[46] FarmanM, AkgülA, AhmadA, ImtiazS. Analysis and dynamical behavior of fractional‐order cancer model with vaccine strategy. Math Methods Appl Sci. 2020;43(7):4871‐4882. · Zbl 1454.35396
[47] AkgülA, ModanliM. Crank-Nicholson difference method and reproducing kernel function for third order fractional differential equations in the sense of Atangana-Baleanu Caputo derivative. Chaos Soliton Fract. 2019;127:10‐16. · Zbl 1448.65088
[48] BhatterS, MathurA, KumarD, SinghJ. A new analysis of fractional Drinfeld-Sokolov-Wilson model with exponential memory. Physica A: Stat Mech Appl. 2020;537:122578. · Zbl 07571776
[49] MehrdoustF, SheikhaniAHR, MashoofM, HasanzadehS. Block‐pulse operational matrix method for solving fractional Black‐Scholes equation. J Econ Stud. 2017;44(3):489‐502.
[50] EbadianA, KhajehnasiriAA. Block‐pulse functions and their applications to solving systems of higher‐order nonlinear Volterra integro‐differential equations. Electron J Differ Equ. 2014;54:1‐9. · Zbl 1287.65141
[51] LiY, SunN. Numerical solution of fractional differential equations using the generalized block pulse operational matrix. Com Math Appl. 2011;62(3):1046‐1054. · Zbl 1228.65135
[52] SrivastavaM, AgrawalSK, DasS. Synchronization of chaotic fractional order Lotka-Volterra system. Int J Nonlinear Sci. 2012;13(4):482‐494. · Zbl 1394.34131
[53] DiethelmK, FordNJ, FreedAD. Detailed error analysis for a fractional Adams method. Numer Algorithms. 2004;36 (1):31‐52. · Zbl 1055.65098
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.