×

On novel analytical solution of time-fractional Schrödinger equation within a hybrid transform. (English) Zbl 1531.35364

Summary: In the present work, an efficient analytical approach that relies on the generalized integral transform coupled with the new iterative transform method is proposed in this research. To determine numerical solutions to time fractional linear/nonlinear Schrödinger equations in the frame of Caputo and Atangana-Baleanu derivatives in the Caputo sense, performed via the aforesaid approach. These nonlinear time fractional Schrödinger equations govern a variety of physical behaviors, involving quantum oscillator motion, lattice vibration, electromagnetic wave propagation, fluid flow, and so on. Besides that, the existence and uniqueness of the solution to the nonlinear model are also constructed. Graphical illustrations report the significance of the projected scheme. The findings show that the offered approach is a valuable tool for examining a diverse plethora of issues for evaluating the nonlinear dynamics of multidimensional systems, and it is more efficient than other known analytical techniques, according to the comparison developed.

MSC:

35R11 Fractional partial differential equations
35Q55 NLS equations (nonlinear Schrödinger equations)
Full Text: DOI

References:

[1] Oldham, K. B., Panier, J.: The fractional calculus, Vol. 111 of mathematics in science and engineering, (1974) · Zbl 0292.26011
[2] Podlubny, I., Fractional differential equations (1999), San Diego: Academic Press, San Diego · Zbl 0924.34008
[3] Uchaikin, VV, Fractional derivatives for physicists and engineers (2013), Berlin: Springer, Berlin · Zbl 1312.26002
[4] Hilfer, R., Applications of fractional calculus in physics (2000), Singapore: Word Scientific, Singapore · Zbl 0998.26002
[5] Magin, RL, Fractional calculus in bioengineering (2006), Danbury: Begell House Publishers, Danbury
[6] Samko, S. G., Kilbas, A. A., Marichev, O. I.: Fractional integrals and derivatives: Theory and applications. Gordon and Breach, Yverdon (1993) · Zbl 0818.26003
[7] Caputo, M., Elasticita e Dissipazione (1969), Bologna: Zanichelli, Bologna
[8] Atangana, A.; Baleanu, D., New fractional derivatives with non-local and non-singular kernel Theory and Application to Heat Transfer Model, Therm. Sci., 20, 763-769 (2016)
[9] Kilbas, AAA; Srivastava, HM; Trujillo, JJ, Theory and applications of fractional differential equations (2006), Amsterdam, The Netherlands: Elsevier Science Limited, Amsterdam, The Netherlands · Zbl 1092.45003
[10] Singh, J., Analysis of fractional blood alcohol model with composite fractional derivative, Chaos Solit. Fract., 140, 110127 (2020)
[11] Naik, PA; Jain, Z.; Owolabi, KM, Global dynamics of a fractional order model for the transmission of HIV epidemic with optimal control, Chaos Solit. Fract., 138, 109826 (2020) · Zbl 1490.37112
[12] Atangana, A.; Alabaraoye, E., Solving a system of fractional partial differential equations arising in the model of HIV infection of \(CD4^+\) cells and attractor one-dimensional Keller-Segel equations, Adv. Diff. Equs., 2013, 94 (2013) · Zbl 1380.92026
[13] Rashid, S.; Khalid, A.; Sultana, S.; Hammouch, Z.; Shah, R.; Alsharif, AM, A novel analytical view of time-fractional Korteweg-De Vries equations via a new integral transform, Symmetry, 13, 1254 (2021) · doi:10.3390/sym13071254
[14] Alqudah, MA; Ashraf, R.; Rashid, S.; Singh, J.; Hammouch, Z.; Abdeljawad, T., Novel numerical investigations of fuzzy Cauchy reaction-diffusion models via generalized fuzzy fractional derivative operators, Fractal Fract., 5, 151 (2021)
[15] Rashid, S.; Hammouch, Z.; Aydi, H.; Ahmad, AG; Alsharif, AA, Novel computations of the time-fractional Fisher’s model via generalized fractional integral operators by means of the Elzaki transform, Fractal Fract., 5, 3, 94 (2021)
[16] Rashid, S.; Sultana, S.; Hammouch, Z.; Jarad, F.; Hamed, YS, Novel aspects of discrete dynamical type inequalities within fractional operators having generalized \(h\)-discrete Mittag-Leffler kernels and application., Chaos, Solit. Fract,, 151, 111204 (2021)
[17] Khan, NA; Ara, A.; Ali, SA; Mahmood, A., Analytical study of Navier-Stokes equation with fractional orders using He’s homotopy perturbation and variational iteration methods, Inter. J. Nonlin. Sci. Numer. Sim., 10, 1127-1134 (2009)
[18] Mufti, MR; Qureshi, MI; Alkhalaf, S.; Iqbal, S., An algorithm: optimal homotopy asymptotic method for solutions of systems of second-order boundary value problems, Math. Prob. Eng., 2017, 8013164 (2017) · Zbl 1426.34033 · doi:10.1155/2017/8013164
[19] Zhang, J.; Wei, Z.; Li, L.; Zhou, C., Least-squares residual power series method for the time-fractional differential equations, Complexity, 2019, 6159024 (2019) · Zbl 1434.65215 · doi:10.1155/2019/6159024
[20] Arqub, OA, Fitted reproducing kernel Hilbert space method for the solutions of some certain classes of time-fractional partial differential equations subject to initial and Neumann boundary conditions, Comp. Math. Appl., 73, 1243-1261 (2017) · Zbl 1412.65174
[21] Ravi Kanth, ASV; Aruna, K., Two-dimensional differential transform method for solving linear and non-linear Schrödinger equations, Chaos. Solit. Fract., 41, 2277-2281 (2009) · Zbl 1198.81089
[22] Liao, F.; Zhang, LM, High accuracy split-step finite difference method for Schrödinger-KdV equations, Commun. Theor. Phys., 70, 413-422 (2021)
[23] Chauhan, A.; Arora, R.; Tomar, A., Lie symmetry analysis and traveling wave solutions of equal width wave equation, Proyecciones, 39, 179-198 (2020) · Zbl 1451.74125
[24] Zedan, HA; Alaidarous, E., Haar wavelet method for the system of integral equations, Abst. Appl. Anal. (2014) · Zbl 1470.65223 · doi:10.1155/2014/418909
[25] Wang, H., Numerical studies on the split-step finite difference method for nonlinear Schrödinger equations, Appl. Math. Comput., 170, 17-35 (2005) · Zbl 1082.65570
[26] Khuri, S., A new approach to the cubic Schröodinger equation: an application of the decomposition technique, Appl. Math. Comput., 97, 251-254 (1998) · Zbl 0940.35187
[27] Wazwaz, AM, A study on linear and nonlinear Schrödinger equations by the variational iteration method, Chaos, Solit. Fract., 37, 1136-1142 (2008) · Zbl 1148.35353
[28] Goswami, A.; Rathore, S.; Singh, J.; Kumar, D., Analytical study of fracional nonlinear Schrödinger equation with harmonic oscillator, Discrete. Cont. Dyn. Sys. Ser. S. (2021) · Zbl 1477.35004 · doi:10.3934/dcdss.2021021
[29] Daftardar-Gejji, V.; Jafari, H., An iterative method for solving nonlinear functional equations, J. Math. Anal. Appl., 316, 753-763 (2006) · Zbl 1087.65055
[30] Ullah, I.; Khan, H.; Rahim, MT, Numerical solutions of fifth and sixth order nonlinear boundary value problems by Daftardar Jafari method, J. Comput. Eng., 2014, 8 (2014)
[31] Wang, K.; Liu, S., Application of new iterative transform method and modified fractional homotopy analysis transform method for fractional Fornberg-Whitham equation, J. Nonlin. Sci. Appl., 9, 2419-2433 (2016) · Zbl 1515.35327
[32] Widatalla, S.; Liu, MZ, New iterative method based on Laplace decomposition algorithm, J. Appl. Math. (2013) · Zbl 1266.65119 · doi:10.1155/2013/286529
[33] Jafari, H., A new general integral transform for solving integral equations, J. Adv. Res. (2020) · doi:10.1016/j.jare.2020.08.016
[34] Debnath, L.; Bhatta, D., Integral transforms and their applications (2014), USA, Boca Raton, FL: CRC Press, USA, Boca Raton, FL · Zbl 1113.44001
[35] Jarad, F.; Abdeljawad, T., A modified Laplace transform for certain generalized fractional operators, Results Nonlin. Anal., 1, 88-98 (2018)
[36] Watugala, GK, Sumudu transform: a new integral transform to solve differential equations and control engineering problems, Int. J. Math. Edu. Sci. Tech., 24, 35-43 (1993) · Zbl 0768.44003
[37] Aboodh, KS, The new integral transform Aboodh transform, Glob. J. Pure Appl. Math., 9, 35-43 (2013)
[38] Ahmadi, SAP; Hosseinzadeh, H.; Cherati, AY, A new integral transform for solving higher order linear ordinary differential equations, Nonlinear Dyn. Syst. Theory, 19, 243-52 (2019) · Zbl 1428.34028
[39] Ahmadi, SAP; Hosseinzadeh, H.; Cherati, AY, A new integral transform for solving higher order linear ordinary Laguerre and Hermite differential equations, Int. J. Appl. Comput. Math., 5, 142 (2019) · Zbl 1440.44002 · doi:10.1007/s40819-019-0712-1
[40] Elzaki, TM, The new integral transform Elzaki Transform, Glob. J. Pure Appl. Math., 7, 57-64 (2011)
[41] Khan, ZH; Khan, WA, N-transform properties and applications, NUST J. Eng. Sci., 1, 1, 127-33 (2008)
[42] Abdelrahim Mahgoub, MM, The new integral transform mohand transform, Adv. Theoret. Appl. Math., 12, 113-20 (2017)
[43] Abdelrahim Mahgoub, MM, The new integral transform sawi transform, Adv. Theoret. Appl. Math., 14, 81-7 (2019)
[44] Kamal, H.; Sedeeg, A., The new integral transform Kamal transform, Adv. Theoret. Appl. Math., 11, 4, 451-8 (2016)
[45] Kim, H., On the form and properties of an integral transform with strength in integral transforms, Far. East J. Math. Sci., 102, 11, 2831-44 (2017)
[46] Kim, H., The intrinsic structure and properties of Laplace-typed integral transforms, Math. Prob. Eng., 2017, 1762729 (2017) · Zbl 1426.44001
[47] Meddahi, M.; Jafari, H.; Ncube, MN, New general integral transform via Atangana-Baleanu derivatives, Adv. Diff. Equ., 2021, 385 (2021) · Zbl 1496.44004 · doi:10.1186/s13662-021-03540-4
[48] Atangana, A.; Baleanu, D., New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20, 763-769 (2016)
[49] Atangana, A.; Koca, I., Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos Solit. Fract., 89, 447-454 (2016) · Zbl 1360.34150
[50] Yavuz, M.; Abdeljawad, T., Nonlinear regularized long-wave models with a new integral transformation applied to the fractional derivative with power and Mittag-Leffler kernel, Adv. Differ. Equ., 2020, 367 (2020) · Zbl 1485.35410
[51] Bokhari, A.; Baleanu, D.; Belgacema, R., Application of Shehu transform to Atangana-Baleanu derivatives, J. Math. Comput. Sci., 20, 101-107 (2020)
[52] Mittag-Leffler, MG, Sur la nouvelle fonction Ea(x), CR Acad. Sci. Paris, 2, 1003 (1903)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.