×

On the construction of optimal linear codes of dimension four. (English) Zbl 07769988

Summary: A fundamental problem in coding theory is to find \(n_q (k,d)\), the minimum length \(n\) for which an \([n,k,d]_q\) code exists. We show that some \(q\)-divisible optimal linear codes of dimension \(4\) over \(\mathbb{F}_q\), which are not of Belov type, can be constructed geometrically using hyperbolic quadrics in \(\mathrm{PG}(3,q)\). We also construct some new linear codes over \(\mathbb{F}_q\) with \(q=7,8\), which determine \(n_7 (4,d)\) for \(31\) values of \(d\) and \(n_8 (4,d)\) for \(40\) values of \(d\).

MSC:

94B05 Linear codes (general theory)
51E20 Combinatorial structures in finite projective spaces
Full Text: DOI

References:

[1] S. Ball, Table of bounds on three dimensional linear codes or (n, r)-arcs in PG(2, q), available at https://web.mat.upc.edu/people/simeon.michael.ball/codebounds.html
[2] B. I. Belov, V. N. Logachev, and V. P. Sandimirov, Construction of a class of linear binary codes that attain the Varšamov-Griesmer bound, Problemy Peredači Informacii 10 (1974), no. 3, 36-44. · Zbl 0317.94014
[3] J. Bierbrauer, Introduction to Coding Theory, Chapman & Hall, Dordrecht, 2005. · Zbl 1060.94001
[4] N. Bono, M. Fujii, and T. Maruta, On optimal linear codes of dimension 4, J. Alge-bra Comb. Discrete Struct. Appl. 8 (2021), no. 2, 73-90. https://doi.org/10.13069/ jacodesmath.935947 · Zbl 1494.94050 · doi:10.13069/jacodesmath.935947
[5] I. G. Bouyukliev, Y. Kageyama, and T. Maruta, On the minimum length of linear codes over F 5 , Discrete Math. 338 (2015), no. 6, 938-953. https://doi.org/10.1016/j.disc. 2015.01.010 · Zbl 1406.94088 · doi:10.1016/j.disc.2015.01.010
[6] A. E. Brouwer and M. van Eupen, The correspondence between projective codes and 2-weight codes, Des. Codes Cryptogr. 11 (1997), no. 3, 261-266. https://doi.org/10. 1023/A:1008294128110 · Zbl 0872.94043 · doi:10.1023/A:1008294128110
[7] E. J. Cheon, On the upper bound of the minimum length of 5-dimensional linear codes, Australas. J. Combin. 37 (2007), 225-232. · Zbl 1114.94019
[8] B. Csajbók and T. Héger, Double blocking sets of size 3q − 1 in PG(2, q), European J. Combin. 78 (2019), 73-89. https://doi.org/10.1016/j.ejc.2019.01.004 · Zbl 1419.51009 · doi:10.1016/j.ejc.2019.01.004
[9] S. M. Dodunekov, Optimal linear codes, Doctor Thesis, Sofia, 1985.
[10] M. Grassl, Tables of linear codes and quantum codes, (electronic table, online), http:// www.codetables.de/.
[11] J. H. Griesmer, A bound for error-correcting codes, IBM J. Res. Develop. 4 (1960), 532-542. https://doi.org/10.1147/rd.45.0532 · Zbl 0234.94009 · doi:10.1147/rd.45.0532
[12] R. Hill, Optimal linear codes, in Cryptography and coding, II (Cirencester, 1989), 75-104, Inst. Math. Appl. Conf. Ser. New Ser., 33, Oxford Univ. Press, New York, 1992. · Zbl 0742.94012
[13] R. Hill and E. Kolev, A survey of recent results on optimal linear codes, in Combinatorial designs and their applications (Milton Keynes, 1997), 127-152, Chapman & Hall/CRC Res. Notes Math., 403, Chapman & Hall/CRC, Boca Raton, FL, 1999. · Zbl 0916.94009
[14] J. W. P. Hirschfeld, Finite projective spaces of three dimensions, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1985. · Zbl 0574.51001
[15] W. C. Huffman and V. S. Pless, Fundamentals of Error-Correcting Codes, Cambridge Univ. Press, Cambridge, 2003. https://doi.org/10.1017/CBO9780511807077 · Zbl 1191.94107 · doi:10.1017/CBO9780511807077
[16] Y. Inoue and T. Maruta, Construction of new Griesmer codes of dimension 5, Finite Fields Appl. 55 (2019), 231-237. https://doi.org/10.1016/j.ffa.2018.10.007 · Zbl 1404.94153 · doi:10.1016/j.ffa.2018.10.007
[17] Y. Kageyama and T. Maruta, On the geometric constructions of optimal linear codes, Des. Codes Cryptogr. 81 (2016), no. 3, 469-480. https://doi.org/10.1007/s10623-015-0167-2 · Zbl 1396.94109 · doi:10.1007/s10623-015-0167-2
[18] K. Kumegawa and T. Maruta, Nonexistence of some Griesmer codes over Fq, Discrete Math. 339 (2016), no. 2, 515-521. https://doi.org/10.1016/j.disc.2015.09.030 · Zbl 1356.94093 · doi:10.1016/j.disc.2015.09.030
[19] K. Kumegawa and T. Maruta, Non-existence of some 4-dimensional Griesmer codes over finite fields, J. Algebra Comb. Discrete Struct. Appl. 5 (2018), no. 2, 101-116. https://doi.org/10.13069/jacodesmath.427968 · Zbl 1423.94151 · doi:10.13069/jacodesmath.427968
[20] K. Kumegawa, T. Okazaki, and T. Maruta, On the minimum length of linear codes over the field of 9 elements, Electron. J. Combin. 24 (2017), no. 1, Paper No. 1.50, 27 pp. https://doi.org/10.37236/6394 · Zbl 1361.94054 · doi:10.37236/6394
[21] I. N. Landjev and T. Maruta, On the minimum length of quaternary linear codes of dimension five, Discrete Math. 202 (1999), no. 1-3, 145-161. https://doi.org/10.1016/ S0012-365X(98)00354-9 · Zbl 0934.94018 · doi:10.1016/S0012-365X(98)00354-9
[22] T. Maruta, On the minimum length of q-ary linear codes of dimension four, Discrete Math. 208/209 (1999), 427-435. https://doi.org/10.1016/S0012-365X(99)00088-6 · Zbl 0957.94038 · doi:10.1016/S0012-365X(99)00088-6
[23] T. Maruta, On the nonexistence of q-ary linear codes of dimension five, Des. Codes Cryptogr. 22 (2001), 165-177. · Zbl 0985.94036
[24] T. Maruta, Construction of optimal linear codes by geometric puncturing, Serdica J. Comput. 7 (2013), no. 1, 73-80. · Zbl 1294.94106
[25] T. Maruta, Griesmer bound for linear codes over finite fields, available at http:// mars39.lomo.jp/opu/griesmer.htm. · Zbl 0906.94018
[26] T. Maruta and Y. Oya, On optimal ternary linear codes of dimension 6, Adv. Math. Commun. 5 (2011), no. 3, 505-520. https://doi.org/10.3934/amc.2011.5.505 · Zbl 1250.94071 · doi:10.3934/amc.2011.5.505
[27] T. Maruta, M. Shinohara, and M. Takenaka, Constructing linear codes from some orbits of projectivities, Discrete Math. 308 (2008), no. 5-6, 832-841. https://doi.org/10. 1016/j.disc.2007.07.045 · Zbl 1143.94019 · doi:10.1016/j.disc.2007.07.045
[28] M. Takenaka, K. Okamoto, and T. Maruta, On optimal non-projective ternary linear codes, Discrete Math. 308 (2008), no. 5-6, 842-854. https://doi.org/10.1016/j.disc. 2007.07.044 · Zbl 1145.94017 · doi:10.1016/j.disc.2007.07.044
[29] H. N. Ward, Divisibility of codes meeting the Griesmer bound, J. Combin. Theory Ser. A 83 (1998), no. 1, 79-93. https://doi.org/10.1006/jcta.1997.2864 · Zbl 0913.94026 · doi:10.1006/jcta.1997.2864
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.