×

Lagrange multipliers and the primal-dual method in the nonlinear static equilibrium of multibody systems. (English) Zbl 0913.73050

Summary: This paper presents four different approaches to the solution of the nonlinear static-equilibrium problem in complex linkages, including rigid and elastic elements. The error function is based on the potential of the system, and includes rigid elements by means of nonlinear constraints. To this end, we use Lagrange multipliers, along with the primal-dual method, penalty functions and weighted stiffness, and make comparisons between them. A Newton-Raphson method is employed for seeking function minima for equilibrium positions.

MSC:

74P99 Optimization problems in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
70B15 Kinematics of mechanisms and robots
Full Text: DOI

References:

[1] Wiley Series in Design Engineering, in: Modern Kinematics: Developments in the Last Forty Years (1993)
[2] García de Jalón, Kinematic and Dynamic Simulation of Multibody Systems: The Real Time Challenge (1994) · doi:10.1007/978-1-4612-2600-0
[3] Avilés, A fairly general method for the optimum synthesis of mechanisms, Mech. Mach. Theory 20 pp 321– (1985) · doi:10.1016/0094-114X(85)90037-0
[4] Avilés, An energy-based general method for the optimum synthesis of mechanisms, J. Mech. Des. (ASME) 116 pp 127– (1994) · doi:10.1115/1.2919336
[5] Vallejo, Nonlinear optimization of planar linkages for kinematic syntheses, Mech. Mach. Theory 30 (4) pp 501– (1995) · doi:10.1016/0094-114X(94)00064-R
[6] Avilés, A procedure for the optimal synthesis of planar mechanisms based on nonlinear position problems, Int. J. Numer. Methods Eng. 40 (8) pp 1505– (1997) · doi:10.1002/(SICI)1097-0207(19970430)40:8<1505::AID-NME125>3.0.CO;2-#
[7] Avilés, A procedure based on finite elements for the solution of nonlinear problems in the kinematic analysis of mechanisms, Int. J. Finite Elem. Anal. Des. 22 (4) pp 305– (1996) · Zbl 0875.70011 · doi:10.1016/0168-874X(95)00017-N
[8] Hernández, Multiple points on the coupler curve of transitional four-hinge planar linkages, Mech. Mach. Theory 29 (7) pp 1015– (1994) · doi:10.1016/0094-114X(94)90069-8
[9] Nakamura, Advanced Robotics: Redundancy and Optimization (1991)
[10] Van der Werff, Kinematic and Dynamic Analysis of Mechanisms, a Finite Element Approach (1977) · Zbl 0365.70003
[11] Besseling, Geometrican and physical nonlinearities: some developments in the Netherlands, Comput. Methods Appl. Mech. Eng. 8 (17/18) pp 131– (1979) · Zbl 0404.73077 · doi:10.1016/0045-7825(79)90085-9
[12] Cardona, Modelling of superelements in mechanism analysis, Int. j. numer. methods eng. 32 (8) pp 1565– (1991) · Zbl 0825.73349 · doi:10.1002/nme.1620320805
[13] Friberg, A method for selecting deformation modes in flexible multibody dynamics, Int. j. numer. methods eng. 32 (8) pp 1637– (1991) · doi:10.1002/nme.1620320808
[14] Géradin, Advanced Multibody System Dynamics pp 337– (1993) · doi:10.1007/978-94-017-0625-4_17
[15] García de Jalón, Computer method for kinematic analysis of lower-pair mechanisms-II: Position problems, Mech. Mach. Theory 16 (5) pp 557– (1981) · doi:10.1016/0094-114X(81)90027-6
[16] Haftka, Elements of Structural Optimization (1992) · Zbl 0782.73004 · doi:10.1007/978-94-011-2550-5
[17] Vanderplaats, Numerical Optimization Techniques for Engineering Design: With Applications (1984) · Zbl 0613.90062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.