×

Extraction of bouton-like structures from neuropil calcium imaging data. (English) Zbl 1526.92002

The authors propose a new method to decompose calcium imaging data of the neuropil into populations of bouton-like synaptic structures with a standard desktop computer. More precisely, the authors introduced a new type of modularity, a widely used quality measure in graph theory, and optimized the clustering configuration by a simulated annealing algorithm, which is established in statistical physics. Simulation showed the case where spatially overlapping boutons were grouped into a single cluster (see Fig. 8.D): a part of detected boutons in high spatial accuracy exhibited additional activity peaks that were not included in the correct signals but were originated from spatially overlapped neighboring boutons. It is shown that, the spatiotemporal population activity of boutons could be a novel approach to examining neural network dynamics at the cellular level.

MSC:

92B20 Neural networks for/in biological studies, artificial life and related topics
92C55 Biomedical imaging and signal processing

Software:

CaImAn
Full Text: DOI

References:

[1] Arenas, A.; Fernández, A.; Gómez, S., Analysis of the structure of complex networks at different resolution levels, New Journal of Physics, 10 (2008)
[2] Baek, S.-J.; Park, A.; Ahn, Y.-J.; Choo, J., Baseline correction using asymmetrically reweighted penalized least squares smoothing, The Analyst, 140, 1, 250-257 (2015)
[3] Barabási, A. L.; Albert, R., Emergence of scaling in random networks, Science, 286, 509-512 (1999) · Zbl 1226.05223
[4] Bertinetto, C. G.; Vuorinen, T., Automatic baseline recognition for the correction of large sets of spectra using continuous wavelet transform and iterative fitting, Applied Spectroscopy, 68, 2, 155-164 (2014)
[5] Bilz, F.; Geurten, B. R.H.; Hancock, C. E.; Widmann, A.; Fiala, A., Visualization of a distributed synaptic memory code in the Drosophila brain, Neuron, 963-976 (2020)
[6] Bruno, A. M.; Frost, W. N.; Humphries, M. D., Modular deconstruction reveals the dynamical and physical building blocks of a locomotion motor program, Neuron, 86, 1, 304-318 (2015)
[7] Cao, J.; Bu, Z.; Gao, G.; Tao, H., Weighted modularity optimization for crisp and fuzzy community detection in large-scale networks, Physica A: Statistical Mechanics and its Applications, 462, 386-395 (2016) · Zbl 1400.91453
[8] Carreira-Rosario, A.; Zarin, A. A.; Clark, M. Q.; Manning, L.; Fetter, R.; Cardona, A.; Doe, C. Q., A command-like descending neuron that coordinately activates backward and inhibits forward locomotion, 1-28 (2018), BioRxiv
[9] Chen, J.; Zaïane, O. R.; Goebel, R., Detecting communities in social networks using max-min modularity, 9th SIAM international conference on data mining 2009, proceedings in applied mathematics, Vol. 2, 973-984 (2009), Society for Industrial and Applied Mathematics
[10] Churchland, M. M.; Cunningham, J. P.; Kaufman, M. T.; Foster, J. D.; Nuyujukian, P.; Ryu, S. I.; Shenoy, K. V.; Shenoy, K. V., Neural population dynamics during reaching, Nature, 487, 7405, 51-56 (2012)
[11] Clauset, A.; Newman, M. E.J.; Moore, C., Finding community structure in very large networks, Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 70, 6, 6 (2004)
[12] Cohen, R.; Erez, K.; ben Avraham, D.; Havlin, S., Resilience of the internet to random breakdowns, Physical Review Letters, 85, 21, 4626-4628 (2000)
[13] Duch, J.; Arenas, A., Community detection in complex networks using extremal optimization, Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 72, 2, 1-4 (2005)
[14] Eguíluz, V. M.; Chialvo, D. R.; Cecchi, G. A.; Baliki, M.; Apkarian, A. V., Scale-free brain functional networks, Physical Review Letters, 94, 1, 1-4 (2005)
[15] Eilers, P. H.C., A perfect smoother, Analytical Chemistry, 75, 14, 3631-3636 (2003)
[16] Fine, P.; Di Paolo, E.; Philippides, A., Spatially constrained networks and the evolution of modular control systems, (Lecture notes in computer science including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics). Lecture notes in computer science including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), LNAI, Vol. 4095 (2006)), 546-557
[17] Fortunato, S.; Barthélemy, M., Resolution limit in community detection, Proceedings of the National Academy of Sciences of the United States of America, 104, 1, 36-41 (2007)
[18] Fushiki, A.; Zwart, M. F.; Kohsaka, H.; Fetter, R. D.; Cardona, A.; Nose, A., A circuit mechanism for the propagation of waves of muscle contraction in Drosophila, eLife, 5, FEBRUARY2016, 1-23 (2016)
[19] Gan, F.; Ruan, G.; Mo, J., Baseline correction by improved iterative polynomial fitting with automatic threshold, Chemometrics and Intelligent Laboratory Systems, 82, 1-2 SPEC. ISS, 59-65 (2006)
[20] Gauthier, J. L.; Tank, D. W., A dedicated population for reward coding in the Hippocampus, Neuron, 99, 1, 179-193.e7 (2018)
[21] Giovannucci, A.; Friedrich, J.; Gunn, P.; Kalfon, J.; Brown, B. L.; Koay, S. A.; Taxidis, J.; Najafi, F.; Gauthier, J. L.; Zhou, P.; Khakh, B. S.; Tank, D. W.; Chklovskii, D. B.; Pnevmatikakis, E. A., Caiman an open source tool for scalable calcium imaging data analysis, eLife, 8, 1-45 (2019)
[22] Gründemann, J.; Bitterman, Y.; Lu, T.; Krabbe, S.; Grewe, B. F.; Schnitzer, M. J.; Lüthi, A., Amygdala ensembles encode behavioral states, Science, 364, 6437 (2019)
[23] Guimerà, R.; Sales-Pardo, M.; Amaral, L. A.N., Modularity from fluctuations in random graphs and complex networks, Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 70, 2, 4 (2004)
[24] Hackett, T. A.; Barkat, T. R.; O’Brien, B. M.J.; Hensch, T. K.; Polley, D. B., Linking topography to tonotopy in the mouse auditory thalamocortical circuit, Journal of Neuroscience, 31, 8, 2983-2995 (2011)
[25] Haq, N. F.; Moradi, M.; Wang, Z. J., Community structure detection from networks with weighted modularity, Pattern Recognition Letters, 122, 14-22 (2019)
[26] He, S.; Zhang, W.; Liu, L.; Huang, Y.; He, J.; Xie, W.; Wu, P.; Du, C., Baseline correction for Raman spectra using an improved asymmetric least squares method, Analytical Methods, 6, 12, 4402-4407 (2014)
[27] Hiramoto, A.; Jonaitis, J.; Niki, S.; Kohsaka, H., Regulation of coordinated muscular relaxation by a pattern- generating intersegmental circuit, Nature Communications, 1-14 (2021)
[28] Humphries, M. D., Spike-train communities: Finding groups of similar spike trains, Journal of Neuroscience, 31, 6, 2321-2336 (2011)
[29] Kirkpatrick, S.; Gelatt, C. D.; Vecchi, M. P., Optimization by simulated annealing, Science, 220, 4598 (1983) · Zbl 1225.90162
[30] Kohsaka, H.; Takasu, E.; Morimoto, T.; Nose, A., A group of segmental premotor interneurons regulates the speed of axial locomotion in Drosophila larvae, Current Biology, 24, 22, 2632-2642 (2014)
[31] Kohsaka, H.; Zwart, M. F.; Fushiki, A.; Fetter, R. D.; Truman, J. W.; Cardona, A.; Nose, A., Regulation of forward and backward locomotion through intersegmental feedback circuits in Drosophila larvae, Nature Communications, 10, 1, 1-11 (2019)
[32] Kreiner, T.; Kirk, M. D.; Scheller, R. H., Cellular and synaptic morphology of a feeding motor circuit in Aplysia californica, Journal of Comparative Neurology, 264, 3, 311-325 (1987)
[33] Lan, T.; Fang, Y.; Xiong, W.; Kong, C., Automatic baseline correction of infrared spectra, Chinese Optics Letters, 5, 10, 613-616 (2007)
[34] Lancichinetti, A.; Fortunato, S., Limits of modularity maximization in community detection, Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 84, 6, 1-8 (2011)
[35] Lee, S.; Meyer, J. F.; Park, J.; Smirnakis, S. M., Visually driven neuropil activity and information encoding in mouse primary visual cortex, Frontiers in Neural Circuits, 11, July, 1-18 (2017)
[36] Leger, M. N.; Ryder, A. G., Comparison of derivative preprocessing and automated polynomial baseline correction method for classification and quantification of narcotics in solid mixtures, Applied Spectroscopy, 60, 2, 182-193 (2006)
[37] Lemon, W. C.; Pulver, S. R.; Höckendorf, B.; McDole, K.; Branson, K.; Freeman, J.; Keller, P. J., Whole-central nervous system functional imaging in larval Drosophila, Nature Communications, 6, May (2015)
[38] Li, Z.; Zhang, S.; Wang, R. S.; Zhang, X. S.; Chen, L., Quantitative function for community detection, Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 77, 3, 1-9 (2008)
[39] Lieber, C. A.; Mahadevan-Jansen, A., Automated method for subtraction of fluorescence from biological Raman spectra, Applied Spectroscopy, 57, 11, 1363-1367 (2003)
[40] London, M.; Häusser, M., Dendritic computation, Annual Review of Neuroscience, 28, 503-532 (2005)
[41] Lu, X.; Kuzmin, K.; Chen, M.; Szymanski, B. K., Adaptive modularity maximization via edge weighting scheme, Information Sciences, 424, 55-68 (2018)
[42] Maruyama, R.; Maeda, K.; Moroda, H.; Kato, I.; Inoue, M.; Miyakawa, H.; Aonishi, T., Detecting cells using non-negative matrix factorization on calcium imaging data, Neural Networks, 55, 11-19 (2014)
[43] Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; Teller, E., Equation of state calculations by fast computing machines, The Journal of Chemical Physics, 21, 6, 1087-1092 (1953) · Zbl 1431.65006
[44] Mölter, J.; Avitan, L.; Goodhill, G. J., Detecting neural assemblies in calcium imaging data, BMC Biology, 16, 1, 1-20 (2018)
[45] Moyle, M. W.; Barnes, K. M.; Kuchroo, M.; Gonopolskiy, A.; Duncan, L. H.; Sengupta, T.; Shao, L.; Guo, M.; Santella, A.; Christensen, R.; Kumar, A.; Wu, Y.; Moon, K. R.; Wolf, G.; Krishnaswamy, S.; Bao, Z.; Shroff, H.; Mohler, W. A.; Colón-Ramos, D. A., Structural and developmental principles of neuropil assembly in C. elegans, Nature, 591, 7848, 99-104 (2021)
[46] Muff, S.; Rao, F.; Caflisch, A., Local modularity measure for network clusterizations, Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 72, 5, 1-4 (2005)
[47] Mukamel, E. A.; Nimmerjahn, A.; Schnitzer, M. J., Automated analysis of cellular signals from large-scale calcium imaging data, Neuron, 63, 6, 747-760 (2009)
[48] Newman, M. E.J., Fast algorithm for detecting community structure in networks, Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 69, 6, 5 (2004)
[49] Newman, M. E.J., Modularity and community structure in networks, Proceedings of the National Academy of Sciences of the United States of America, 103, 23, 8577-8582 (2006)
[50] Newman, M. E.J.; Girvan, M., Finding and evaluating community structure in networks, Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 69, 2 2, 1-15 (2004)
[51] Otsu, N., A threshold selection method from gray-level histograms, IEEE Transactions on Systems, Man, and Cybernetics, 9, 1, 62-66 (1979)
[52] Pastor-Satorras, R.; Vespignani, A., Epidemic spreading in scale-free networks, Physical Review Letters, 86, 14, 3200-3203 (2001)
[53] Pnevmatikakis, E. A.; Soudry, D.; Gao, Y.; Machado, T. A.; Merel, J.; Pfau, D.; Reardon, T.; Mu, Y.; Lacefield, C.; Yang, W.; Ahrens, M.; Bruno, R.; Jessell, T. M.; Peterka, D. S.; Yuste, R.; Paninski, L., Simultaneous denoising, deconvolution, and demixing of calcium imaging data, Neuron, 89, 2, 285 (2016)
[54] Poirazi, P.; Papoutsi, A., Illuminating dendritic function with computational models, Nature Reviews Neuroscience, 21, 6, 303-321 (2020)
[55] Qian, F.; Wu, Y.; Hao, P., A fully automated algorithm of baseline correction based on wavelet feature points and segment interpolation, Optics and Laser Technology, 96, 202-207 (2017)
[56] Reichardt, J.; Bornholdt, S., Statistical mechanics of community detection, Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 74, 1, 1-14 (2006)
[57] Reynolds, S.; Abrahamsson, T.; Schuck, R.; Sjöström, P. Jesper.; Schultz, S. R.; Dragotti, P. L., ABLE: An activity-based level set segmentation algorithm for two-photon calcium imaging data, eNeuro, 4, 5, 1-13 (2017)
[58] Rosvall, M.; Bergstrom, C. T., An information-theoretic framework for resolving community structure in complex networks, International Journal of Web Based Communities, 9, 3, 130 (2013), http://dl.acm.org/citation.cfm?id=2499306
[59] Schulze, G.; Jirasek, A.; Yu, M. M.L.; Lim, A.; Turner, R. F.B.; Blades, M. W., Investigation of selected baseline removal techniques as candidates for automated implementation, Applied Spectroscopy, 59, 5, 545-574 (2005)
[60] Shao, L.; Griffiths, P. R., Automatic baseline correction by wavelet transform for quantitative open-path fourier transform infrared spectroscopy, Environmental Science and Technology, 41, 20, 7054-7059 (2007)
[61] Shibue, R.; Komaki, F., Deconvolution of calcium imaging data using marked point processes, PLoS Computational Biology, 16, 3, 1-25 (2020)
[62] Sporns, O.; Betzel, R. F., Modular brain networks, Annual Review of Psychology, 67, 613-640 (2016)
[63] Stam, C. J.; Reijneveld, J. C., Graph theoretical analysis of complex networks in the brain, Nonlinear Biomedical Physics, 1, 1-19 (2007)
[64] Tinnermann, A.; Büchel, C.; Cohen-Adad, J., Cortico-spinal imaging to study pain, NeuroImage, 224, October 2020, Article 117439 pp. (2021)
[65] Torre, G.; Fernández-Lugo, S.; Guarino, R.; Fernández-Palacios, J. M., Network analysis by simulated annealing of taxa and islands of macaronesia north Atlantic ocean, Ecography, 42, 4, 768-779 (2019)
[66] van den Heuvel, M. P.; Stam, C. J.; Boersma, M.; Hulshoff Pol, H. E., Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain, NeuroImage, 43, 3, 528-539 (2008)
[67] Wang, Y.; Hu, Y.; Di, Z.; Fan, Y., The effect of hub nodes on the community structure in scale-free networks, Physica A: Statistical Mechanics and its Applications, 390, 21-22, 4027-4033 (2011)
[68] White, S., & Smyth, P. (2005). A spectral clustering approach to finding communities in graphs. In Proceedings of the 2005 SIAM international conference on data mining, SDM 2005 (pp. 274-285). http://dx.doi.org/10.1137/1.9781611972757.25.
[69] Zhang, Z. M.; Chen, S.; Liang, Y. Z., Baseline correction using adaptive iteratively reweighted penalized least squares, Analyst, 135, 5, 1138-1146 (2010)
[70] Zhang, F.; Tang, X.; Tong, A.; Wang, B.; Wang, J.; Lv, Y.; Tang, C.; Wang, J., Baseline correction for infrared spectra using adaptive smoothness parameter penalized least squares method, Spectroscopy Letters, 53, 3, 222-233 (2020)
[71] Zhao, J.; Lui, H.; Mclean, D. I.; Zeng, H., Automated autofluorescence background subtraction algorithm for biomedical raman spectroscopy, Applied Spectroscopy, 61, 11, 1225-1232 (2007)
[72] Zhuang, J.; Ng, L.; Williams, D.; Valley, M.; Li, Y.; Garrett, M.; Waters, J., An extended retinotopic map of mouse cortex, eLife, 6, 1-29 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.