×

Scale-free dynamics of COVID-19 in a Brazilian city. (English) Zbl 1525.92074

MSC:

92D30 Epidemiology
Full Text: DOI

References:

[1] Vabret, N.; Britton, G. J.; Gruber, C.; Hegde, S.; Kim, J.; Kuksin, M.; Levantovsky, R.; Malle, L.; Moreira, A.; Park, M. D.; Pia, L.; Risson, E.; Saffern, M.; Salome, B.; Selvan, M. E.; Spindler, M. P.; Tan, J.; van der Heide, V.; Gregory, J. K.; Alexandropoulos, K.; Bhardwaj, N.; Brown, B. D.; Greenbaum, B.; Gumus, Z. H.; Homann, D.; Horowitz, A.; Kamphorst, A. O.; de Lafaille, M. A.C.; Mehandru, S.; Merad, M.; Samstein, R. M.; Project, S. I.R., Immunology of COVID-19: current state of the science, Immunity, 52, 6, 910-941 (2020)
[2] Goodell, J. W., COVID-19 and finance: agendas for future research, Finance Res. Lett., 35 (2020)
[3] Sharifi, A.; Khavarian-Garmsir, A. R., The COVID-19 pandemic: impacts on cities and major lessons for urban planning, design, and management, Sci. Total Environ., 749, 142391 (2020)
[4] Cruz, C. H.d. B., Social distancing in São Paulo State: demonstrating the reduction in cases using time series analysis of deaths due to COVID-19, Rev. Bras. Epidemiol., 23, e200056 (2020)
[5] Flaxman, S.; Mishra, S.; Gandy, A.; Unwin, H. J.T.; Mellan, T. A.; Coupland, H.; Whittaker, C.; Zhu, H.; Berah, T.; Eaton, J. W.; Monod, M.; Ghani, A. C.; Donnelly, C. A.; Riley, S.; Vollmer, M. A.C.; Ferguson, N. M.; Okell, L. C.; Bhatt, S., Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe, Nature, 584, 7820, 257-261 (2020)
[6] Dong, E.; Du, H.; Gardner, L., An interactive web-based dashboard to track COVID-19 in real time, Lancet Infect. Dis., 20, 5, 533-534 (2020)
[7] Diekmann, O.; Heesterbeek, H.; Britton, T., Mathematical tools for understanding infectious diseases dynamics, Princeton Series in Theoretical and Computational Biology (2013), Princeton University Press · Zbl 1304.92009
[8] Hethcote, H. W., The mathematics of infectious diseases, SIAM Rev., 42, 4, 599-653 (2000) · Zbl 0993.92033
[9] He, S.; Peng, Y.; Sun, K., SEIR modeling of the COVID-19 and its dynamics, Nonlinear Dyn., 101, 3, SI, 1667-1680 (2020)
[10] S. Bhatt, N. Ferguson, S. Flaxman, A. Gandy, S. Mishra, J.A. Scott, Semi-mechanistic Bayesian modeling of COVID-19 with renewal processes, 2020, arXiv:2012.00394
[11] Champredon, D.; Dushoff, J.; Earn, D. J.D., Equivalence of the erlang-distributed SEIR epidemic model and the renewal equation, SIAM J. Appl. Math., 78, 6, 3258-3278 (2018) · Zbl 1404.92173
[12] Bailey, N. T.J., The Mathematical Theory of Epidemics (1957), Charles Griffin & Co., Ltd., London
[13] Viboud, C.; Simonsen, L.; Chowell, G., A generalized-growth model to characterize the early ascending phase of infectious disease outbreaks, Epidemics, 15, 27-37 (2016)
[14] Abbasi, M.; Bollini, A.; Castillo, J.; Deppman, A.; Guidio, J.; Matuoka, P.; Meirelles, A.; Policarpo, J.; Ramos, A.; Simionatto, S.; Varona, A.; Andrade-II, E.; Panjeh, H.; Trevisan, L., Fractal signatures of the COVID-19 spread, Chaos, Solitons Fractals, 140, 110119 (2020) · Zbl 1495.92066
[15] Jahanshahi, H.; Munoz-Pacheco, J. M.; Bekiros, S.; Alotaibi, N. D., A fractional-order SIRD model with time-dependent memory indexes for encompassing the multi-fractional characteristics of the COVID-19, Chaos, Solitons Fractals, 143 (2021)
[16] Vasconcelos, G.; Macêdo, A.; Duarte-Filho, G., Power law behaviour in the saturation regime of fatality curves of the COVID-19 pandemic, Sci. Rep., 11, 4619 (2021)
[17] Padhy, S.; Dimri, V. P., Apparent scaling of virus surface roughness—An example from the pandemic SARS-nCoV, Physica D, 414, 132704 (2020)
[18] Thurner, S.; Klimek, P.; Hanel, R., A network-based explanation of why most COVID-19 infection curves are linear, Proc. Natl. Acad. Sci., 117, 37, 22684-22689 (2020) · Zbl 1485.92159
[19] Kabir, K. A.; Kuga, K.; Tanimoto, J., Analysis of sir epidemic model with information spreading of awareness, Chaos, Solitons Fractals, 119, 118-125 (2019) · Zbl 1448.92302
[20] Kuga, K.; Tanimoto, J., Effects of void nodes on epidemic spreads in networks, Sci. Rep., 12, 1, 3957 (2022)
[21] Tanimoto, J., Sociophysics Approach to Epidemics, vol. 23 (2021), Springer · Zbl 1495.92002
[22] Newman, M. E., The structure and function of complex networks, SIAM Rev., 45, 2, 167-256 (2003) · Zbl 1029.68010
[23] Barabási, A.-L.; Albert, R., Emergence of scaling in random networks, Science, 286, 5439, 509-512 (1999) · Zbl 1226.05223
[24] Albert, R.; Barabási, A. L., Statistical mechanics of complex networks, Rev. Mod. Phys., 74, 47-97 (2002) · Zbl 1205.82086
[25] Song, C.; Havlin, S.; Makse, H. A., Self-similarity of complex networks, Nature, 433, 392 (2005)
[26] Kopelman, R., Fractal reaction kinetics, Science, 241, 4873, 1620-1626 (1988)
[27] A. Deppman, E.O.A. Segundo, Flux of information in scale-free networks, 2021, arXiv:2106.08959
[28] Keeling, M. J.; Eames, K. T.D., Networks and epidemic models, J. R. Soc. Interface, 2, 295-307 (2005)
[29] Pastor-Satorras, R.; Castellano, C.; Mieghem, P. V.; Vespignani, A., Epidemic processes in complex networks, Rev. Mod. Phys., 87, 925-979 (2015)
[30] Pastor-Satorras, R.; Vespignani, A., Epidemic spreading in scale-free networks, Phys. Rev. Lett., 86, 3200-3203 (2001)
[31] Kosmidis, K.; Macheras, P., A fractal kinetics SI model can explain the dynamics of COVID-19 epidemics, PLoS One, 15 (2020)
[32] Abbey, H., An examination of the reed-frost theory of epidemics, Hum. Biol., 24, 3, 201 (1952)
[33] Tsallis, C., Possible generalization of Boltzmann-Gibbs statistics, J. Stat. Phys., 52, 479-487 (1988) · Zbl 1082.82501
[34] Tsallis, C.; Tirnakli, U., Predicting COVID-19 peaks around the world, Front. Phys., 8, 217 (2020)
[35] Tirnakli, U.; Tsallis, C., Epidemiological model with anomalous kinetics: early stages of the COVID-19 pandemic, Front. Phys., 8, 613168 (2020)
[36] Deppman, A., Thermodynamics with fractal structure, Tsallis statistics, and hadrons, Phys. Rev. D, 93, 5 (2016)
[37] Deppman, A.; Frederico, T.; Megias, E.; Menezes, D. P., Fractal structure and non-extensive statistics, Entropy, 20, 9 (2018)
[38] IBGE | Cidades@ | São Paulo | São Caetano do Sul | Panorama, 2021, https://cidades.ibge.gov.br/brasil/sp/sao-caetano-do-sul/panorama. Accessed Jul. 18, 2021.
[39] Leal, F. E.; Mendes-Correa, M. C.; Buss, L. F.; Costa, S. F.; Bizario, J. C.; De Souza, S. R.; Thomaz, O.; Tozetto-Mendoza, T. R.; Villas-Boas, L. S.; De Oliveira-Da Silva, L. C., Clinical features and natural history of the first 2073 suspected COVID-19 cases in the corona São Caetano primary care programme: a prospective cohort study, BMJ Open, 11, 1, e042745 (2021)
[40] Peixoto, P. S.; Marcondes, D.; Peixoto, C.; Oliva, S. M., Modeling future spread of infections via mobile geolocation data and population dynamics. An application to COVID-19 in brazil, PLoS One, 15, 7, e0235732 (2020)
[41] Candido, D. S.; Claro, I. M.; de Jesus, J. G.; Souza, W. M.; Moreira, F. R.; Dellicour, S.; Mellan, T. A.; Plessis, L. D.; Pereira, R. H.; Sales, F. C., Evolution and epidemic spread of SARS-CoV-2 in Brazil, Science, 369, 6508, 1255-1260 (2020)
[42] Faria, N. R.; Mellan, T. A.; Whittaker, C.; Claro, I. M.; Candido, D.da S.; Mishra, S.; Crispim, M. A.; Sales, F. C.; Hawryluk, I.; McCrone, J. T., Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil, Science, 372, 6544, 815-821 (2021)
[43] Buss, L. F.; Prete, C. A.; Abrahim, C. M.; Mendrone, A.; Salomon, T.; de Almeida-Neto, C.; França, R. F.; Belotti, M. C.; Carvalho, M. P.; Costa, A. G., Three-quarters attack rate of SARS-CoV-2 in the Brazilian amazon during a largely unmitigated epidemic, Science, 371, 6526, 288-292 (2021)
[44] e2020GL088748
[45] Sabino, E. C.; Buss, L. F.; Carvalho, M. P.; Prete, C. A.; Crispim, M. A.; Fraiji, N. A.; Pereira, R. H.; Parag, K. V.; Peixoto, P.d. S.; Kraemer, M. U., Resurgence of COVID-19 in Manaus, Brazil, despite high seroprevalence, Lancet, 397, 10273, 452-455 (2021)
[46] Bettencourt, L. M.A., The origins of scaling in cities, Science, 340, 6139, 1438-1441 (2013) · Zbl 1355.91063
[47] Bettencourt, L. M.A.; Lobo, J.; Helbing, D.; Kühnert, C.; West, G. B., Growth, innovation, scaling, and the pace of life in cities, Proc. Natl. Acad. Sci., 104, 17, 7301-7306 (2007)
[48] Batty, M., A theory of city size, Science, 340, 6139, 1418-1419 (2013)
[49] Parag, K.; Donnelly, C., Using information theory to optimise epidemic models for real-time prediction and estimation, PLoS Comput. Biol., 16, e1007990 (2020)
[50] Gonçalves, B.; Perra, N.; Vespignani, A., Modeling users’ activity on twitter networks: validation of Dunbar’s number, PLoS One, 6 (2011)
[51] Adrian, Z.; Tymon, M., A new extraordinary means of appeal in the Polish criminal procedure: the basic principles of a fair trial and a complaint against a cassatory judgment, AJEE, 6, 1-18 (2023)
[52] Backstrom, L.; Boldi, P.; Rosa, M.; Ugander, J.; Vigna, S., Four degrees of separation, Proceedings of the 3rd Annual ACM Web Science Conference, 33-42 (2012)
[53] Wang, Z.; Yang, Z.; Shan, H.; Shi, J., A measurement analysis of information propagation in online social network, 2013 Third International Conference on Instrumentation, Measurement, Computer, Communication and Control, 23-27 (2013)
[54] Leskovec, J.; Lang, K. J.; Dasgupta, A.; Mahoney, M. W., Statistical properties of community structure in large social and information networks, Proceedings of the 17th International Conference on World Wide Web, ACM, New York, NY, USA (2008)
[55] Kwak, H.; Lee, C.; Park, H.; Moon, S., What is twitter, a social network or a news media?, Proceedings of the 19th International Conference on World Wide Web, ACM, New York, NY, USA (2010)
[56] Leung, K.; Jit, M.; Lau, E. H.Y.; Wu, J. T., Social contact patterns relevant to the spread of respiratory infectious diseases in Hong Kong, Sci. Rep., 7, 7974 (2017)
[57] Mossong, J.; Hens, N.; Jit, M.; Beutels, P.; Auranen, K.; Mikolajczyk, R.; Massari, M.; Salmaso, S.; Tomba, G. S.; Wallinga, J.; Heijne, J.; Sadkowska-Todys, M.; Rosinska, M.; Edmunds, W. J., Social contacts and mixing patterns relevant to the spread of infectious diseases, PLoS Med., 5, 3, e74 (2008)
[58] McAloon, C. G.; Wall, P.; Butler, F.; Codd, M.; Gormley, E.; Walsh, C.; Duggan, J.; Murphy, T. B.; Nolan, P.; Smyth, B.; O’Brien, K.; Teljeur, C.; Green, M. J.; O’Grady, L.; Culhane, K.; Buckley, C.; Carroll, C.; Doyle, S.; Martin, J.; More, S. J., Numbers of close contacts of individuals infected with SARS-CoV-2 and their association with government intervention strategies, BMC Public Health, 21, 1, 2238 (2021)
[59] Gimma, A.; Munday, J. D.; Wong, K. L.M.; Coletti, P.; van Zandvoort, K.; Prem, K., CMMID COVID-19 working group, (Klepac, P.; Rubin, G. J.; Funk, S.; Edmunds, W. J.; Jarvis, C. I., Changes in Social Contacts in England During the COVID-19 Pandemic Between March 2020 and March 2021 as Measured by the CoMix Survey: A Repeated Cross-Sectional Study, PLoS Med., vol. 19 (2022)), e1003907
[60] Presença das linhagens por estado, 2021, http://www.genomahcov.fiocruz.br/presenca-das-linhagens-por-estado/. Accessed Jul. 26, 2021.
[61] Albert, R.; Barabási, A. L., Topology of evolving networks: local events and universality, Phys. Rev. Lett., 85, 5234-5237 (2000)
[62] Gong, H.; Guo, C.; Liu, Y., Measuring network rationality and simulating information diffusion based on network structure, Physica A, 564, 125501 (2021)
[63] Hamilton, M. J.; Milne, B. T.; Walker, R. S.; Burger, O.; Brown, J. H., The complex structure of hunter-gatherer social networks, Proc. R. Soc. B., 274, 2195-2203 (2007)
[64] Girvan, M.; Newman, M. E.J., Community structure in social and biological networks, Proc. Natl. Acad. Sci., 99, 12, 7821-7826 (2002) · Zbl 1032.91716
[65] Youn, H.; Bettencourt, L. M.A.; Lobo, J.; Strumsky, D.; Samaniego, H.; West, G. B., Scaling and universality in urban economic diversification, J. R. Soc. Interface, 13, 114, 20150937 (2016)
[66] Brockmann, D.; Theis, F., Money circulation, trackable items, and the emergence of universal human mobility patterns, IEEE Pervasive Comput., 7, 4, 28-35 (2008)
[67] West, G. B.; Brown, J. H.; Enquist, B. J., The fourth dimension of life: fractal geometry and allometric scaling of organisms, Science, 284, 5420, 1677-1679 (1999) · Zbl 1226.37058
[68] Cohen, R.; Erez, K.; ben Avraham, D.; Havlin, S., Resilience of the internet to random breakdowns, Phys. Rev. Lett., 85, 4626-4628 (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.