×

The \(\mathcal{L_C}\)-structure-preserving algorithms of quaternion \(LDL^H\) decomposition and Cholesky decomposition. (English) Zbl 07757050

Summary: In this paper, the \(\mathcal{L_C}\)-structure-preserving algorithms of \(LDL^H\) decomposition and Cholesky decomposition of quaternion Hermitian positive definite matrices based on the semi-tensor product of matrices are studied. We first propose \(\mathcal{L_C}\)-representation by using the semi-tensor product of matries and the structure matrix of the product of the quaternion. Then, \(\mathcal{L_C}\)-structure-preserving algorithms of \(LDL^H\) decomposition and Cholesky decomposition of quaternion Hermitian positive definite matrices are proposed by using \(\mathcal{L_C}\)-representation, and the advantages of our method are obtained by comparing the operation time and error with the real structure-preserving algorithms in Wei et al. (Quaternion matrix computations. Nova Science Publishers, Hauppauge, 2018). Finally, we apply the \(\mathcal{L_C}\)-structure-preserving algorithm of Cholesky decomposition to strict authentication of color images.

MSC:

65F99 Numerical linear algebra
15A23 Factorization of matrices
Full Text: DOI

References:

[1] Krishnamoorthy, A.; Menon, D., Matrix inversion using Cholesky decomposition: signal processing: algorithms, architectures, arrangements, and applications (SPA), IEEE, 2013, 70-72 (2013)
[2] Harbrecht, H.; Peters, M.; Schneider, R., On the low-rank approximation by the pivoted Cholesky decomposition, Appl. Numer. Math., 62, 4, 428-440 (2012) · Zbl 1244.65042 · doi:10.1016/j.apnum.2011.10.001
[3] Shabat, G.; Shmueli, Y.; Aizenbud, Y., Randomized LU decomposition, Appl. Comput. Harmon. Anal., 44, 2, 246-272 (2018) · Zbl 1380.65077 · doi:10.1016/j.acha.2016.04.006
[4] Golub, GH; Reinsch, C., Singular value decomposition and least squares solutions, Linear Algebra, 2, 134-151 (1971) · Zbl 0181.17602
[5] Weiss, H., Quaternion-based rate/attitude tracking system with application to gimbal attitude control, J. Guidance Control Dyn., 16, 4, 609-616 (1993) · doi:10.2514/3.21057
[6] Zou, C.; Kou, KI; Wang, Y., Quaternion collaborative and sparse representation with application to color face recognition, IEEE Trans. Image Process, 25, 7, 3287-3302 (2016) · Zbl 1408.94854 · doi:10.1109/TIP.2016.2567077
[7] Janovská, D.; Opfer, G., Matrix decompositions for quaternions, World Acad. Sci. Eng. Technol., 47, 141-142 (2008) · Zbl 1223.15024
[8] Le Bihan, N.; Mars, J., Singular value decomposition of quaternion matrices: a new tool for vector-sensor signal processing, Signal Process, 84, 7, 1177-1199 (2004) · Zbl 1154.94331 · doi:10.1016/j.sigpro.2004.04.001
[9] Bunse-Gerstner, A.; Byers, R.; Mehrmann, V., A quaternion QR algorithm, Numer. Math., 55, 1, 83-95 (1989) · Zbl 0681.65024 · doi:10.1007/BF01395873
[10] Jia, Z.; Wei, M.; Zhao, M., A new real structure-preserving quaternion QR algorithm, J. Comput. Appl. Math., 343, 26-48 (2018) · Zbl 1538.65083 · doi:10.1016/j.cam.2018.04.019
[11] Wang, MH; Ma, WH, A structure-preserving method for the quaternion LU decomposition in quaternionic quantum theory, Comput. Phys. Commun., 184, 9, 2182-2186 (2013) · Zbl 1344.65038 · doi:10.1016/j.cpc.2013.05.001
[12] Li, Y.; Wei, MS; Zhang, FX; Zhao, JL, A real structure-preserving method for the quaternion LU decomposition, revisited, Calcolo, 54, 4, 1553-1563 (2017) · Zbl 1382.65073 · doi:10.1007/s10092-017-0241-4
[13] Li, Y.; Wei, M.; Zhang, F., A fast structure-preserving method for computing the singular value decomposition of quaternion matrices, Appl. Math. Comput., 235, 157-167 (2014) · Zbl 1336.65057
[14] Wei, M.; Li, Y.; Zhang, F., Quaternion Matrix Computations (2018), Hauppauge: Nova Science Publishers, Hauppauge
[15] Wang, MH; Ma, WH, A structure-preserving algorithm for the quaternion Cholesky decomposition, Appl. Math. Comput., 223, 354-361 (2013) · Zbl 1329.65067
[16] Cheng, DZ; Zhang, LJ, On semi-tensor product of matrices and its applications, Acta Math. Appl. Sin. E, 19, 2, 219-228 (2003) · Zbl 1059.15033 · doi:10.1007/s10255-003-0097-z
[17] Cheng, DZ; Qi, HS; Zhao, Y., An Introduction to Semi-tensor Product of Matrices and Its Applications (2012), Singapore: World Scientific, Singapore · Zbl 1273.15029 · doi:10.1142/8323
[18] Cheng, DZ, Semi-tensor product of matrices and its application to Morgen’s problem, Sci. China Inf., 44, 3, 195-212 (2001) · Zbl 1125.15311
[19] Wang, XY; Gao, S., Application of matrix semi-tensor product in chaotic image encryption, J. Frankl. Inst., 356, 18, 11638-11667 (2019) · Zbl 1455.94038 · doi:10.1016/j.jfranklin.2019.10.006
[20] Wang, XY; Gao, S., Image encryption algorithm for synchronously updating Boolean networks based on matrix semi-tensor product theory, Inf. Sci., 507, 16-36 (2020) · Zbl 1456.68034 · doi:10.1016/j.ins.2019.08.041
[21] Rushdi, AMA; Ghaleb, FAM, A tutorial exposition of semi-tensor products of matrices with a stress on their representation of Boolean functions, J. King Abdulaziz Univ. Comput. Inf. Technol. Sci., 5, 1, 3-30 (2016)
[22] Li, HT; Wang, YZ, Boolean derivative calculation with application to fault detection of combinational circuits via the semi-tensor product method, Automatica, 48, 4, 688-693 (2012) · Zbl 1238.93029 · doi:10.1016/j.automatica.2012.01.021
[23] Pei, SC; Cheng, CM, A novel block truncation coding of color images using a quaternion-moment-preserving principle, IEEE Trans. Commun., 45, 5, 583-595 (1997) · doi:10.1109/26.592558
[24] Rogaway, P.; Shrimpton, T., Cryptographic hash-function basics: definitions, implications, and separations for preimage resistance, second-preimage resistance, and collision resistance, FSE, 3017, 371-388 (2004) · Zbl 1079.68560
[25] Menezes, AJ; Van Oorschot, PC; Vanstone, SA, Handbook of Applied Cryptography (2018), Boca Raton: CRC Press, Boca Raton · Zbl 0868.94001 · doi:10.1201/9780429466335
[26] Davis, JW; Sharma, V., Background-subtraction using contour-based fusion of thermal and visible imagery, Comput. Vis. Image Underst., 106, 2-3, 162-182 (2007) · doi:10.1016/j.cviu.2006.06.010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.