×

Estimating the Hölder exponents based on the \(\epsilon \)-complexity of continuous functions: an experimental analysis of the algorithm. (English. Russian original) Zbl 1521.93185

Autom. Remote Control 84, No. 4, 337-347 (2023); translation from Avtom. Telemekh. 2023, No. 4, 19-34 (2023).
Summary: This paper describes one method for estimating the Hölder exponent based on the \(\epsilon \)-complexity of continuous functions, a concept formulated lately. Computational experiments are carried out to estimate the Hölder exponent for smooth and fractal functions and study the trajectories of discrete deterministic and stochastic systems. The results of these experiments are presented and discussed.

MSC:

93E03 Stochastic systems in control theory (general)
93C10 Nonlinear systems in control theory
26B35 Special properties of functions of several variables, Hölder conditions, etc.
Full Text: DOI

References:

[1] Pavlov, A. N.; Anishchenko, V. S., Multifractal Analysis of Complex Signals, Phys. Usp., 50, 819-834 (2007) · doi:10.1070/PU2007v050n08ABEH006116
[2] Shiryaev, A. N., Essentials of Stochastic Finance: Facts, Models, Theory (1999) · Zbl 0926.62100 · doi:10.1142/3907
[3] Savitskii, A. V., Method for Estimating the Hurst Exponent of Fractional Brownian Motion, Dokl. Math., 100, 564-567 (2019) · Zbl 1442.62048 · doi:10.1134/S1064562419060188
[4] Falkoner, K. J., Fractal Geometry: Mathematical Foundations and Applications (2003) · Zbl 1060.28005 · doi:10.1002/0470013850
[5] Ming, L.; Vitanyi, P., An Introduction to Kolmogorov Complexity and Its Applications (1997) · Zbl 0866.68051
[6] Piryatinska, A.; Darkhovsky, B.; Kaplan, A., Binary Classification of Multichannel-EEG Records Based on the \(\epsilon \), Comput. Method. Program. Biomedicin., 152, 131-139 (2017) · doi:10.1016/j.cmpb.2017.09.001
[7] Piryatinska, A.; Darkhovsky, B., Retrospective Change-Points Detection for Multidimensional Time Series of Arbitrary Nature: Model-Free Technology Based on the \(\epsilon \), Entropy, 23, 1626 (2021) · doi:10.3390/e23121626
[8] Darkhovsky, B. S., Estimate of the Hölder Exponent Based on the \(\epsilon \), Mathematical Notes, 111, 628-631 (2022) · Zbl 1507.26022 · doi:10.1134/S0001434622030324
[9] Dahan, A.; Dubnov, Y. A.; Popkov, A. Y., Brief Report: Classification of Autistic Traits According to Brain Activity Recoded by fNIRS Using \(\epsilon \), J. Autism Dev. Disord., 51, 3380-3390 (2020) · doi:10.1007/s10803-020-04793-w
[10] Darkhovsky, B. S., On the Complexity and Dimension of Continuous Finite-Dimensional Maps, Theory of Probability and Its Applications, 65, 375-387 (2020) · Zbl 1453.37022 · doi:10.1137/S0040585X97T990010
[11] Kolmogorov, A. N., Combinatorial Foundations of Information Theory and the Calculus of Probabilities, Russian Mathematical Surveys, 38, 29-40 (1983) · Zbl 0597.60002 · doi:10.1070/RM1983v038n04ABEH004203
[12] Itô, K. and McKean, H.P., Jr., Diffusion Processes and Their Sample Paths, Classics in Mathematics, 1996th ed., Springer, 1996.
[13] Mörters, P.; Peres, V., Brownian Motion (2010) · Zbl 1243.60002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.