×

Orbifold Jacobian algebras for invertible polynomials. (English) Zbl 1541.14055

Summary: An important invariant of a polynomial \(f\) is its Jacobian algebra defined by its partial derivatives. Let \(f\) be invariant with respect to the action of a finite group of diagonal symmetries \(G\). We axiomatically define an orbifold Jacobian \(\mathbb{Z}/2\mathbb{Z}\)-graded algebra for the pair \((f, G)\) and show its existence and uniqueness in the case, when \(f\) is an invertible polynomial. In case when \(f\) defines an ADE singularity, we illustrate its geometric meaning.

MSC:

14J33 Mirror symmetry (algebro-geometric aspects)
14B05 Singularities in algebraic geometry

References:

[1] V. Arnold, A. Gusein-Zade, A. Varchenko, Singularities of Differentiable Maps, vol I, Monographs in Mathematics, 82. Birkhäuser Boston, Inc., Boston, MA, 1985 DOI: 10.1007/978-1-4612-5154-5 · Zbl 0554.58001 · doi:10.1007/978-1-4612-5154-5
[2] A. Basalaev, A. Takahashi, Hochschild cohomology and orbifold Jacobian algebras associated to invertible polynomials, Journal of Noncommutative Geometry 14.3 (2020): 861-877 · Zbl 1476.14073
[3] A. Basalaev, A. Takahashi, W. Werner, Orbifold Jacobian algebras for exceptional unimodal singulari-ties, Arnold Mathematical Journal. Vol. 3. No. 4. pp. 483-498, (2017) DOI: 10.1007/s40598-017-0076-8 · Zbl 1393.14003 · doi:10.1007/s40598-017-0076-8
[4] D. Bättig, H. Knörrer, Singularitäten, LECT NOTES MATH, ETH Zürich, Birkhäuser, Basel, Boston, Stuttgart (1991) · Zbl 0743.32001
[5] A. Craw, M. Reid, How to calculate A-Hilb C 3 , Séminaires et Congrès, 6 (2002), pp. 129-154 [EG-ZT] W. Ebeling, S. M. Gusein-Zade, A. Takahashi, Orbifold E-functions of dual invertible polynomials, Journal of Geometry and Physics, 106, 184-191. (2016) DOI: 10.1016/j.geomphys.2016.03.026 · Zbl 1379.32025 · doi:10.1016/j.geomphys.2016.03.026
[6] W. Ebeling, A. Takahashi, Strange duality of weighted homogeneous polynomials, COMPOS MATH 147, no. 5 (2011): 1413-33. DOI: 10.1112/S0010437X11005288 · Zbl 1238.14029 · doi:10.1112/S0010437X11005288
[7] W. Ebeling, A. Takahashi, Mirror Symmetry between Orbifold curves and Cusp Singularities with Group action, INT MATH RES NOTICES 2013(10) (2013), 2240-2270. DOI: 10.1093/imrn/rns115 · Zbl 1314.14083 · doi:10.1093/imrn/rns115
[8] W. Ebeling, A. Takahashi, Variance of the exponents of orbifold Landau-Ginzburg models, MATH RES LETT, 20 (2013), no.01, 51-65. DOI: 10.4310/MRL.2013.v20.n1.a5 · Zbl 1285.32012 · doi:10.4310/MRL.2013.v20.n1.a5
[9] A. Francis, T. Jarvis, D. Johnson, R. Suggs: Landau-Ginzburg Mirror Symmetry for Orbifolded Frobenius Algebras, Proc. String-Math 2011, pp. 333-353 (2012) DOI: 10.1090/pspum/085/1389 · doi:10.1090/pspum/085/1389
[10] Y. Ito, M. Reid: The McKay correspondence for finite subgroups of SL(3, C), In: Higher-dimensional complex varieties (Trento, 1994), de Gruyter, Berlin, 1996, pp. 221-240. · Zbl 0894.14024
[11] R. Kaufmann, Orbifolding Frobenius Algebras, INT J MATH, 14 (2003), 573-619. DOI: 10.1142/S0129167X03001831 · Zbl 1083.57037 · doi:10.1142/S0129167X03001831
[12] R. Kaufmann, Singularities with Symmetries, orbifold Frobenius algebras and Mirror Symmetry, CON-TEMP MATH, 403 (2006), 67-116. DOI: 10.1090/conm/403/07596 · Zbl 1116.14037 · doi:10.1090/conm/403/07596
[13] M. Krawitz, FJRW rings and Landau-Ginzburg Mirror Symmetry, (2009) arXiv: 0906.0796
[14] M. Kreuzer, The mirror map for invertible LG models, PHYS LETT B 328 (1994), no.3-4, 312-318. DOI: 10.1016/0370-2693(94)91485-0 · doi:10.1016/0370-2693(94)91485-0
[15] M. Kreuzer, H. Skarke, On the classification of quasihomogeneous functions, COMMUN MATH PHYS, 150, 137-147 (1992). DOI: 10.1007/BF02096569 · Zbl 0767.57019 · doi:10.1007/BF02096569
[16] K. Saito, Primitive forms for a universal unfolding of a function with an isolated critical point, J MATH SCI-U TOKYO. IA Math. 28 (1982), no. 3, 775-792. · Zbl 0523.32015
[17] K. Saito, Period mapping associated to a primitive form, PUBL RIMS, 19 (1983) 1231-1264. DOI: 10.2977/prims/1195182028 · Zbl 0539.58003 · doi:10.2977/prims/1195182028
[18] K. Saito and A. Takahashi: From Primitive Forms to Frobenius manifolds, P SYMP PURE MATH, 78 (2008) 31-48. DOI: 10.1090/pspum/078/2483747 · Zbl 1161.32013 · doi:10.1090/pspum/078/2483747
[19] C. Vafa: String vacua and orbifoldized LG models., Modern Physics Letters A 4.12, (1989) 1169-1185. DOI: 10.1142/S0217732389001350 · doi:10.1142/S0217732389001350
[20] A. Basalaev, Faculty of Mathematics, National Research University Higher School of Economics, Usacheva str., 6, 119048 Moscow, Russian Federation, and Skolkovo Institute of Science and Technology, Nobelya str., 3, 121205 Moscow, Russian Federation Email address: a.basalaev@skoltech.ru
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.