×

Quasi-periodic motions on symplectic tori. (English) Zbl 1531.37057

The authors study quasi-periodic motions on symplectic tori. In particular, they prove the following: Consider a quasi-periodic motion defined by a real analytic vector field \( X_{\nu} \) on a neighbourhood \( \mathbb{T}^{2d}\times V \) of a symplectic torus \( \mathbb{T}^{2d}\times\{\nu(\omega^0)\}\) such that:
(a) The vector \( \nu(\omega^0) \) satisfies a subquadratic arithmetic condition;
(b) The map \( \nu:V\to \mathbb{R}^{2d} \) is a submersion.
Then, for any real analytic symplectic vector field \( X \) sufficiently close to \( X_{\nu} \), there exists a positive measure-parametrising torus that can be symplectic conjugated to a quasi-periodic one.
Note that the arithmetic condition (a) on the frequency vector \( \nu(\omega^0) \) is weaker than a Diophantine condition but stronger than a Brjuno condition.
Reviewer: Qi Zhou (Nankai)

MSC:

37J40 Perturbations of finite-dimensional Hamiltonian systems, normal forms, small divisors, KAM theory, Arnol’d diffusion
37C55 Periodic and quasi-periodic flows and diffeomorphisms
70K43 Quasi-periodic motions and invariant tori for nonlinear problems in mechanics
70H08 Nearly integrable Hamiltonian systems, KAM theory

References:

[1] V.I. Arnold. Proof of a theorem of A. N. Kolmogorov on the preservation of conditionally periodic motions under a small perturbation of the Hamiltonian. Uspehi Mat. Nauk, 18(5):13-40, 1963. English translation: Russian Math. Surveys. DOI: 10.1070/rm1963v018n05abeh004130 · doi:10.1070/rm1963v018n05abeh004130
[2] H.W. Broer, G.B. Huitema, and M.B. Sevryuk. Families of quasi-periodic motions in dynamical systems depending on parameters. In Nonlinear Dynamical Systems and Chaos, pages 171-211. Springer, 1996. DOI: 10.1007/978-3-0348-7518-9_9 · Zbl 0842.58067 · doi:10.1007/978-3-0348-7518-9_9
[3] H.W. Broer, G.B. Huitema, and M.B. Sevryuk. Quasi-periodic motions in families of dynamical systems: order amidst chaos. Springer, 2009. DOI: 10.1007/978-3-0348-7518-9_9 · Zbl 0870.58087 · doi:10.1007/978-3-0348-7518-9_9
[4] H.W. Broer, G.B Huitema, F. Takens, and B.L.J. Braaksma. Unfoldings and bifurcations of quasi-periodic tori. Number 421. American Mathematical Soc., 1990. DOI: 10.1090/memo/0421 · Zbl 0717.58043 · doi:10.1090/memo/0421
[5] A.D. Bruno. Analytic form of differential equations I. Trans. Moscow Math. Soc., 25:131-288, 1971. · Zbl 0272.34018
[6] J. Féjoz. A proof of the invariant torus theorem of Kolmogorov. Regular and Chaotic Dynamics, 17(1):1-5, 2012. DOI: 10.1134/s1560354712010017 · Zbl 1252.70033 · doi:10.1134/s1560354712010017
[7] M. Garay. An Abstract KAM Theorem. Moscow Mathematical Journal, 14(4):745-772, 2014. DOI: 10.17323/1609-4514-2014-14-4-745-772 · Zbl 1344.37069 · doi:10.17323/1609-4514-2014-14-4-745-772
[8] M. Garay. Arithmetic Density. Proceedings of the Edinburgh Mathematical Society, 59(3):691-700, 2016. DOI: 10.1017/s0013091515000358 · Zbl 1423.11125 · doi:10.1017/s0013091515000358
[9] M. Garay and D. van Straten. KAM Theory, Parts I, II, and 3. arXiv: 1805.11859, arXiv: 1809.03492, arXiv: 1810.09423 (2018)
[10] M. Garay and D. van Straten. A category of Banach space functors. arXiv: 2010.02320 (2020)
[11] M. Garay and D. van Straten. Versal deformations of isolated vector field singularities. arXiv: 2011.06802 (2020)
[12] M. Garay and D. Van Straten. The Herman invariant tori conjecture. arXiv: 1909.06053v2 (2022)
[13] A. González-Enríquez, A. Haro, and R. De la Llave. Singularity theory for non-twist KAM tori, volume 227 of Memoirs of the AMS. American Mathematical Society, 2014. · Zbl 1343.37043
[14] M. Herman. Exemples de flots Hamiltoniens dont aucune perturbation en topologie C ∞ n’a d’orbites périodiques sur un ouvert de surfaces d’énergies. C. R. Acad. Sci. Paris. Série I, 312(13):989-994, 1991. · Zbl 0759.58016
[15] M.R. Herman. Simple proofs of local conjugacy theorems for diffeomorphisms of the circle with almost every rotation number. Boletim da Sociedade Brasileira de Matemática, 16(1):45-83, 1985. DOI: 10.1007/bf02584836 · Zbl 0651.58008 · doi:10.1007/bf02584836
[16] D.Y. Kleinbock and G.A. Margulis. Flows on homogeneous spaces and Diophantine approximation on manifolds. Ann. of Math., 148:339-360, 1998. DOI: 10.2307/120997 · Zbl 0922.11061 · doi:10.2307/120997
[17] A.N. Kolmogorov. On the conservation of quasi-periodic motions for a small perturbation of the Hamiltonian function. Dokl. Akad. Nauk SSSR, 98:527-530, 1954. (In Russian). · Zbl 0056.31502
[18] J. Moser. Convergent series expansions for quasi-periodic motions. Math. Annalen, 169(1):136-176, 1967. DOI: 10.1007/bf01399536 · Zbl 0149.29903 · doi:10.1007/bf01399536
[19] J. Moser. On the construction of almost periodic solutions for ordinary differential equations (Tokyo, 1969). · Zbl 0201.41701
[20] In Proc. Internat. Conf. on Functional Analysis and Related Topics, pages 60-67. Univ. of Tokyo Press, 1969.
[21] J. Pöschel. A lecture on the classical KAM theorem. In A.B. Katok, R. de la Llave, Ya.B. Pesin, and H.Weiss, editors, Smooth Ergodic Theory and Its Applications, volume 69 of Proceedings of Symposia in Pure Mathematics, pages 707-732. Amer. Math. Soc., 2001. DOI: 10.1090/pspum/069/1858551 · Zbl 0999.37053 · doi:10.1090/pspum/069/1858551
[22] H. Rüssmann. Über das Verhalten analytischer Hamiltonscher Differentialgleichungen in der Nähe einer Gleichgewichtslösung. Math. Annalen, 154:285-306, 1964. DOI: 10.1007/bf01362565 · Zbl 0124.04701 · doi:10.1007/bf01362565
[23] H. Rüssmann. Nondegeneracy in the perturbation theory of integrable dynamical systems. In Number theory and dynamical systems (York, 1987), London Math. Soc., pages 5-18. Cambridge University Press, 1989. DOI: 10.1017/cbo9780511661983.002 · Zbl 0689.34039 · doi:10.1017/cbo9780511661983.002
[24] H. Rüssmann. Invariant tori in non-degenerate nearly integrable Hamiltonian systems. Regular and chaotic dynamics, 6(2):119-204, 2001. · Zbl 0992.37050
[25] M.B. Sevryuk. The classical KAM theory at the dawn of the twenty-first century. Moscow Math. Journal, 3(3):1113-1144, 2003. DOI: 10.17323/1609-4514-2003-3-3-1113-1144 · Zbl 1121.37045 · doi:10.17323/1609-4514-2003-3-3-1113-1144
[26] M.B. Sevryuk. Hamiltonian and reversible systems with smooth families of invariant tori. Indagationes Mathematicae, 32(2):406-425, 2021. DOI: 10.1016/j.indag.2020.12.001 · Zbl 1464.37065 · doi:10.1016/j.indag.2020.12.001
[27] I. Vaisman. Lectures on the geometry of Poisson manifolds, volume 118. Birkhäuser, 2012.
[28] H. Whitney. Analytic extensions of differentiable functions defined in closed sets. Trans. Amer. math. Soc., 36:63-89, 1934. DOI: 10.1090/s0002-9947-1934-1501735-3 · JFM 60.0217.01 · doi:10.1090/s0002-9947-1934-1501735-3
[29] J.-C. Yoccoz. Travaux de Herman sur les tores invariants. Astérique, 206:311-344, 1992. · Zbl 0791.58044
[30] Mauricio Garay, Institut Fibonacci, 1 avenue Pierre Grenier, 92100 Boulogne, France
[31] Arezki Kessi, University of Sciences and Technology Houari Boumediene, Analysis Department, Faculty of Mathematics, Bp 32 Bab Ezzouar, 16111, Algeria
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.