×

Energy consistent algorithms for frictional contact problems. (English) Zbl 0916.73078

We propose a product formula algorithm for the evolution of local frictional conditions, with the associated operator splitting guided by an a priori energy estimate. The resulting algorithm is characterized by exact conservation of energy during stick friction, and positive dissipation consistent with the frictional model used during slip. Effectiveness of the algorithm is demonstrated by a series of finite element simulations involving large deformations and frictional slip, completed with appropriate comparisons to more traditional schemes.

MSC:

74S30 Other numerical methods in solid mechanics (MSC2010)
74S05 Finite element methods applied to problems in solid mechanics
74A55 Theories of friction (tribology)
74M15 Contact in solid mechanics
Full Text: DOI

References:

[1] Simo, ZAMP 43 pp 757– (1992) · Zbl 0758.73001 · doi:10.1007/BF00913408
[2] Crisfield, Int. J. Numer. Meth. Engng. 37 pp 1897– (1994) · Zbl 0804.70002 · doi:10.1002/nme.1620371108
[3] Galvanetto, Int. J. Numer. Meth. Engng. 39 pp 2265– (1996) · Zbl 0881.73125 · doi:10.1002/(SICI)1097-0207(19960715)39:13<2265::AID-NME954>3.0.CO;2-O
[4] and , ’Exact energy and momentum conserving algorithms for general models in nonlinear elasticity’, Comput. Meth. Appl. Mech. Engng., 1998, submitted.
[5] Laursen, Int. J. Numer. Meth. Engng. 40 pp 863– (1997) · Zbl 0886.73067 · doi:10.1002/(SICI)1097-0207(19970315)40:5<863::AID-NME92>3.0.CO;2-V
[6] and , ’Formulation and analysis of conserving algorithms for dynamic contact/impact problems’, Comput. Meth. Appl. Mech. Engng., 1998, in press.
[7] Simo, Comput. Meth. Appl. Mech. Engng. 99 pp 61– (1992) · Zbl 0764.73089 · doi:10.1016/0045-7825(92)90123-2
[8] Armero, Int. J. Plasticity 9 pp 749– (1994) · Zbl 0791.73026 · doi:10.1016/0749-6419(93)90036-P
[9] Introduction to the Mechanics of a Continuous Medium, Prentice-Hall, Englewood Cliffs, N.J., 1969.
[10] An Introduction to Continuum Mechanics, Academic Press, Orlando, FL, 1981. · Zbl 0559.73001
[11] and , Mathematical Foundations of Elasticity, Prentice-Hall, Englewood Cliffs, N.J., 1983.
[12] Laursen, Int. J. Numer. Meth. Engng. 36 pp 3451– (1993) · Zbl 0833.73057 · doi:10.1002/nme.1620362005
[13] Laursen, Int. J. Solids Struct. 31 pp 669– (1988) · Zbl 0793.73088 · doi:10.1016/0020-7683(94)90145-7
[14] and , Les Inequations en Mecanique et en Phisyque, Dunod, Paris, 1972.
[15] and , Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, SIAM, Philadelphia, 1988. · doi:10.1137/1.9781611970845
[16] Wriggers, Comput. Struct. 37 pp 319– (1990) · Zbl 0727.73080 · doi:10.1016/0045-7949(90)90324-U
[17] and , Elastoplasticity and Viscoplasticity: Computational Aspects, 1997, to be published.
[18] Laursen, Comput. Meth. Appl. Mech. Engng. 143 pp 197– (1997) · Zbl 0892.73049 · doi:10.1016/S0045-7825(96)01157-7
[19] Simo, Comput. Meth. Appl. Mech. Engng. 98 pp 41– (1992) · Zbl 0764.73088 · doi:10.1016/0045-7825(92)90170-O
[20] Chorin, Comm. Pure Appl. Math. XXXI pp 205– (1978) · Zbl 0358.65082 · doi:10.1002/cpa.3160310205
[21] Newmark, J. Engng. Mech. Div., ASCE 85 pp 67– (1959)
[22] Hilber, Earthquake Engng. Struct. Dyn. 5 pp 283– (1977) · doi:10.1002/eqe.4290050306
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.