×

Existence of solutions for a three-point Hadamard fractional resonant boundary value problem. (English) Zbl 1527.34017

In this article, the authors study a class of three point boundary value problems of Hadamard fractional nonlinear differential equation as \[ \begin{cases} (^H D^\alpha_{a^+}u)(t)=f(t,u,^{H} D^{\alpha-1}_{a^+}u)),~~ 1<\alpha\leq 2,~0<a<t<b, \\ (^{H} D^{\alpha-2}_{a^+}u)(a)=0,~~\eta u(\xi)=u(b),~~ a<\xi<b,~\eta>0, \end{cases} \] where the parameters satisfy \[ (\log\frac{b}{a})^{\alpha-1}=\eta (\log\frac{\xi}{a})^{\alpha-1}. \]
The existence of solutions for the boundary value problems is established, and is proven by using the theory of coincidence degree. Finally, a numerical example is provided to illustrate the theoretical results obtained.

MSC:

34A08 Fractional ordinary differential equations
34B10 Nonlocal and multipoint boundary value problems for ordinary differential equations
34B15 Nonlinear boundary value problems for ordinary differential equations
47H11 Degree theory for nonlinear operators

Software:

sysdfod; DFOC
Full Text: DOI

References:

[1] B. Ahmad, S. K. Ntouyas and A. Alsaedi, New results for boundary value problems of Hadamard-type fractional differential inclusions and integral boundary conditions, Bound. Value Probl. 2013 (2013), Paper No. 275. · Zbl 1291.34037
[2] A. Ahmadova, I. T. Huseynov, A. Fernandez and N. I. Mahmudov, Trivariate Mittag-Leffler functions used to solve multi-order systems of fractional differential equations, Commun. Nonlinear Sci. Numer. Simul. 97 (2021), Article ID 105735. · Zbl 1464.34005
[3] A. Ahmadova, I. T. Huseynov and N. I. Mahmudov, Controllability of fractional stochastic delay dynamical systems, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb. 46 (2020), no. 2, 294-320. · Zbl 1466.93016
[4] A. Ahmadova and N. I. Mahmudov, Langevin differential equations with general fractional orders and their applications to electric circuit theory, J. Comput. Appl. Math. 388 (2021), Paper No. 113299. · Zbl 1460.34010
[5] A. Amara, S. Etemad and S. Rezapour, Topological degree theory and Caput-Hadamard fractional boundary value problems, Adv. Difference Equ. 369 (2020), Paper No. 369. · Zbl 1485.34023
[6] T. M. Atanackovic, S. Pilipovic, B. Stankovic and D. Zorica, Fractional Calculus with Applications in Mechanics, Wiley, New York, 2014. · Zbl 1291.74001
[7] A. Babakhani and V. Daftardar-Gejji, Existence of positive solutions of nonlinear fractional differential equations, J. Math. Anal. Appl. 278 (2003), no. 2, 434-442. · Zbl 1027.34003
[8] Z. Bai, Solvability for a class of fractional m-point boundary value problem at resonance, Comput. Math. Appl. 62 (2011), no. 3, 1292-1302. · Zbl 1235.34006
[9] Z. Bai and H. Lu, Positive solutions for boundary value problem of nonlinear fractional differential equations, J. Math. Anal. Appl. 311 (2005), 495-505. · Zbl 1079.34048
[10] Z. Bai and Y. Zhang, The existence of solutions for a fractional multi-point boundary value problem, Comput. Math. Appl. 60 (2010), no. 8, 2364-2372. · Zbl 1205.34018
[11] D. Baleanu, Z. B. Guvenc and J. A. T. Machado, New Trends in Nanotechnology and Fractional Calculus Applications, Springer, Dordrecht, 2010. · Zbl 1196.65021
[12] D. Baleanu, J. A. T. Machado and A. C. J. Luo, Fractional Dynamics and Control, Springer, New York, 2012.
[13] A. Benham and N. Kosmatov, Multiple positive solutions of a fourth-order boundary value problem, Mediterr. J. Math. 14 (2017), no. 2, Paper No. 78. · Zbl 1372.34051
[14] K. Buvaneswari, P. Karthikeyan and D. Baleanu, On a system of fractional coupled hybrid Hadamard differential equations with terminal conditions, Adv. Difference. Equ. 2020 (2020), Paper No. 419. · Zbl 1486.34022
[15] L. H. Erbe and H. Wang, On the existence of positive solutions of ordinary differential equations, Proc. Amer. Math. Soc. 120 (1994), no. 3, 743-748. · Zbl 0802.34018
[16] S. Etemad, S. Rezapour and F. M. Saker, On a fractional Caputo-Hadamard problem with boundary value conditions via different orders of the Hadamard fractional operators, Adv. Difference. Equ. 2020 (2020), Paper No. 272. · Zbl 1482.34021
[17] R. E. Gaines and J. Mawhin, Coincidence Degree and Nonlinear Differential Equations, Springer, Berlin, 1977. · Zbl 0326.34021
[18] S. Gao, Q. Wang and B. Wu, Existence and global exponential stability of periodic solutions for coupled control systems on networks with feedback and time delays, Commun. Nonlinear Sci. Numer. Simul. 63 (2018), 72-87. · Zbl 1511.34078
[19] L.-J. Guo, J.-P. Sun and Y.-H. Zhao, Existence of positive solutions for nonlinear third-order three-point boundary value problems, Nonlinear Anal. 68 (2008), no. 10, 3151-3158. · Zbl 1141.34310
[20] X. Hao, M. Zuo and L. Liu, Multiple positive solutions for a system of impulsive integral boundary value problems with sign-changing nonlinearities, Appl. Math. Lett. 82 (2018), 24-31. · Zbl 1392.34019
[21] J. Henderson and R. Luca, Existence of positive solutions for a system of semipositone fractional boundary value problems, Electron. J. Qual. Theory Differ. Equ. 2016 (2016), Paper No. 22. · Zbl 1363.34007
[22] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000. · Zbl 0998.26002
[23] I. T. Huseynov, A. Ahmadova, A. Fernandez and N. I. Mahmudov, Explicit analytical solutions of incommensurate fractional differential equation systems, Appl. Math. Comput. 390 (2021), Paper No. 125590. · Zbl 1508.34006
[24] C. Kiataramkul, S. K. Ntouyas, J. Tariboon and A. Kijjathanakorn, Generalized Sturm-Liouville and Langevin equations via Hadamard fractional derivatives with anti-periodic boundary conditions, Bound. Value Probl. 2016 (2016), Paper No. 217. · Zbl 1357.34017
[25] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Nath. Stud. 204, Elsevier, Amsterdam, 2006. · Zbl 1092.45003
[26] V. Kiryakova, Generalized Fractional Calculus and Applications, John Wiley & Sons, New York, 1994. · Zbl 0882.26003
[27] N. Kosmatov, A symmetric solution of a multipoint boundary value problem at resonance, Abstr. Appl. Anal. 2006 (2006), Article ID 54121. · Zbl 1137.34313
[28] N. Kosmatov, Multi-point boundary value problems on time scales at resonance, J. Math. Anal. Appl. 323 (2006), no. 1, 253-266. · Zbl 1107.34008
[29] N. Kosmatov, A boundary value problem of fractional order at resonance, Electron. J. Differential Equations 2010 (2010), Paper No. 135. · Zbl 1210.34007
[30] N. Kosmatov, A singular non-local problem at resonance, J. Math. Anal. Appl. 394 (2012), no. 1, 425-431. · Zbl 1260.34037
[31] N. Kosmatov and W. Jiang, Resonant functional problems of fractional order, Chaos Solitons Fractals 91 (2016), 573-579. · Zbl 1372.34048
[32] K. Q. Lan, Multiple positive solutions of semilinear differential equations with singularities, J. Lond. Math. Soc. (2) 63 (2001), no. 3, 690-704. · Zbl 1032.34019
[33] R. W. Leggett and L. R. Williams, Multiple positive fixed points of nonlinear operators on ordered Banach spaces, Indiana Univ. Math. J. 28 (1979), no. 4, 673-688. · Zbl 0421.47033
[34] Y. Li, J. Qin and B. Li, Existence and global exponential stability of periodic solutions for quaternion-valued cellular neural networks with time-varying delays, Neurocomputing 292 (2018), no. 31, 91-103.
[35] S. Liang and J. Zhang, Positive solutions for boundary value problems of nonlinear fractional differential equation, Nonlinear Anal. 71 (2009), no. 11, 5545-5550. · Zbl 1185.26011
[36] S. Liang and J. Zhang, Existence of multiple positive solutions for m-point fractional boundary value problems on an infinite interval, Math. Comput. Model. 54 (2011), no. 5-6, 1334-1346. · Zbl 1235.34023
[37] W. Liu, L. Liu and Y. Wu, Existence of solutions for integral boundary value problems of singular Hadamard-type fractional differential equations on infinite interval, Adv. Difference. Equ. 2020 (2020), Paper No. 274. · Zbl 1482.34029
[38] Y. Liu and X. Liu, Existence of solutions of resonant boundary value problems for fractional differential equations, Diff. Equ. Cont. Proc. (2012), no. 3, 70-90. · Zbl 1412.34037
[39] N. I. Mahmudov, I. T. Huseynov, N. A. Aliev and F. A. Aliev, Analytical approach to a class of Bagley-Torvik equations, TWMS J. Pure Appl. Math. 11 (2020), no. 2, 238-258. · Zbl 1491.34016
[40] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, World Scientific, Singapore, 2010. · Zbl 1210.26004
[41] K. S. Miller and B. Ross, An Introduction to Fractional Calculus and Fractioal Differential Equation, John Wiley, New York, 1993. · Zbl 0789.26002
[42] K. B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, 1974. · Zbl 0428.26004
[43] I. Petras, Fractional-Order Nonlinear Systems. Modeling, Analysis and Simulation, Springer, Berlin, 2011. · Zbl 1228.34002
[44] I. Podlubny, Fractional Differential Equations, Math. Sci. Appl. 19, Academic Press, New York, 1999. · Zbl 0918.34010
[45] S. N. Rao, M. Singh and M. Z. Meetei, Multiplicity of positive solutions for Hadamard fractional differential equations with p-Laplacian operator, Bound. Value Probl. 2020 (2020), Paper No. 43. · Zbl 1495.34046
[46] S. S. Ray, Fractional Calculus with Applications for Nuclear Reactor Dynamics, CRC Press, Boca Raton, 2016. · Zbl 1317.00002
[47] C.-S. Sin and L. Zheng, Existence and uniqueness of global solutions of Caputo-type fractional differential equations, Fract. Calc. Appl. Anal. 19 (2016), no. 3, 765-774. · Zbl 1345.34008
[48] J. Wang, The existence of positive solutions for the one-dimensional p-Laplacian, Proc. Amer. Math. Soc. 125 (1997), no. 8, 2275-2283. · Zbl 0884.34032
[49] W. Yukunthorn, S. Suantai, S. K. Ntouyas and J. Tariboon, Boundary value problems for impulsive multi-order Hadamard fractional differential equations, Bound. Value Probl. 2015 (2015), Paper No. 48. · Zbl 1341.34013
[50] R. Zafar, M. ur Rehman and M. Shams, On Caputo modification of Hadamard-type fractional derivative and fractional Taylor series, Adv. Difference Equ. 2000 (2020), Paper No. 219. · Zbl 1482.26012
[51] Y. Zhang and Z. Bai, Existence of solutions for nonlinear fractional three-point boundary value problems at resonance, J. Appl. Math. Comput. 36 (2011), no. 1-2, 417-440. · Zbl 1225.34013
[52] W. Zhang and W. Liu, Existence of solutions for several higher-order Hadamard-type fractional differential equations with integral boundary conditions on infinite interval, Bound. Value Probl. 2018 (2018), Paper No. 134. · Zbl 1499.34089
[53] K. Zhao, Multiple positive solutions of integral BVPs for high-order nonlinear fractional differential equations with impulses and distributed delays, Dyn. Syst. 30 (2015), no. 2, 208-223. · Zbl 1321.34105
[54] X. Zhao and W. Ge, Unbounded solutions for a fractional boundary value problems on the infinite interval, Acta Appl. Math. 109 (2010), no. 2, 495-505. · Zbl 1193.34008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.