×

Krylov solvability under perturbations of abstract inverse linear problems. (English) Zbl 07709524

This paper discusses an abstract linear inverse problems in Hilbert spaces, especially the approximability by finite linear combinations of vectors from the cyclic subspace associated with the datum and with the linear operator of the problem, also known as Krylov solution. Krylov subspace type methods are very efficient and popular in practice. In this interesting paper, the authors study the possible behaviors of persistence, gain, or loss of Krylov solvability under suitable small perturbations of the infinite-dimensional inverse problem, which sheds light into the the stability or instability of Krylov methods.

MSC:

47N40 Applications of operator theory in numerical analysis
65J22 Numerical solution to inverse problems in abstract spaces
47B37 Linear operators on special spaces (weighted shifts, operators on sequence spaces, etc.)
65J05 General theory of numerical analysis in abstract spaces

References:

[1] N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Space, Frederick Ungar, New York, 1993. · Zbl 0874.47001
[2] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011. · Zbl 1220.46002
[3] J.-F. Carpraux, S. K. Godunov and S. V. Kuznetsov, Condition number of the Krylov bases and subspaces, Linear Algebra Appl. 248 (1996), 137-160. · Zbl 0861.65042
[4] N. A. Caruso and A. Michelangeli, Krylov solvability of unbounded inverse linear problems, Integral Equations Operator Theory 93 (2021), no. 1, Paper No. 1. · Zbl 1473.41009
[5] N. A. Caruso and A. Michelangeli, Convergence of the conjugate gradient method with unbounded operators, Oper. Matrices 16 (2022), no. 1, 35-68. · Zbl 07533182
[6] N. A. Caruso, A. Michelangeli and P. Novati, On Krylov solutions to infinite-dimensional inverse linear problems, Calcolo 56 (2019), no. 3, Paper No. 32. · Zbl 1476.65093
[7] N. A. Caruso, A. Michelangeli and P. Novati, On general convergence behaviours of finite-dimensional approximants for abstract linear inverse problems, Asymptot. Anal. 127 (2022), no. 1-2, 167-189. · Zbl 1509.65110
[8] J. W. Daniel, The conjugate gradient method for linear and nonlinear operator equations, SIAM J. Numer. Anal. 4 (1967), 10-26. · Zbl 0154.40302
[9] X. Du, M. Sarkis, C. E. Schaerer and D. B. Szyld, Inexact and truncated parareal-in-time Krylov subspace methods for parabolic optimal control problems, Electron. Trans. Numer. Anal. 40 (2013), 36-57. · Zbl 1288.65093
[10] A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, Appl. Math. Sci. 159, Springer, New York, 2004. · Zbl 1059.65103
[11] L. Gehér, Cyclic vectors of a cyclic operator span the space, Proc. Amer. Math. Soc. 33 (1972), 109-110. · Zbl 0242.47016
[12] M. A. Gilles and A. Townsend, Continuous analogues of Krylov subspace methods for differential operators, SIAM J. Numer. Anal. 57 (2019), no. 2, 899-924. · Zbl 1411.65047
[13] I. C. Gohberg and A. S. Markus, Two theorems on the gap between subspaces of a Banach space, Uspekhi Mat. Nauk 14 (1959), no. 5(89), 135-140. · Zbl 0093.12003
[14] A. K. Gupta and S. Mukherjee, On Hausdorff metric spaces, preprint (2019), https://arxiv.org/abs/1909.07195v3.
[15] P. R. Halmos, A Hilbert Space Problem Book, 2nd ed., Encyclopedia Math. Appl. 17, Springer, New York, 1982. · Zbl 0496.47001
[16] M. Hanke, Conjugate Gradient Type Methods for Ill-Posed Problems, Pitman Res. Notes Math. Ser. 327, Longman Scientific & Technical, Harlow, 1995. · Zbl 0830.65043
[17] P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems, SIAM Monogr. Math. Model. Comput., Society for Industrial and Applied Mathematics, Philadelphia, 1998.
[18] J. Henrikson, Completeness and total boundedness of the Hausdorff metric, MIT Undergrad J. Math. 1 (1999), 69-80.
[19] D. A. Herrero, Eigenvectors and cyclic vectors for bilateral weighted shifts, Rev. Un. Mat. Argentina 26 (1972/73), 24-41. · Zbl 0249.47024
[20] R. Herzog and E. Sachs, Superlinear convergence of Krylov subspace methods for self-adjoint problems in Hilbert space, SIAM J. Numer. Anal. 53 (2015), no. 3, 1304-1324. · Zbl 1312.65044
[21] W. J. Kammerer and M. Z. Nashed, On the convergence of the conjugate gradient method for singular linear operator equations, SIAM J. Numer. Anal. 9 (1972), 165-181. · Zbl 0243.65026
[22] W. Karush, Convergence of a method of solving linear problems, Proc. Amer. Math. Soc. 3 (1952), 839-851. · Zbl 0048.09504
[23] T. Kato, Perturbation Theory for Linear Operators, Class. Math., Springer, Berlin, 1995. · Zbl 0836.47009
[24] M. G. Kreĭn and M. A. Krasnosel’skiĭ, Fundamental theorems on the extension of Hermitian operators and certain of their applications to the theory of orthogonal polynomials and the problem of moments, Uspehi Matem. Nauk (N. S.) 2 (1947), no. 3(19), 60-106. · Zbl 1460.47011
[25] M. G. Kreĭ, M. A. Krasnosel’skiĭ and D. Mil’man, Concerning the deficiency numbers of linear operators in Banach space and some geometric questions, Sbornik Trudov Instit. Mat. Akad. Nauk. Ukr. S.S.R. 11 (1948), 97-112.
[26] S. V. Kuznetsov, Perturbation bounds of the Krylov bases and associated Hessenberg forms, Linear Algebra Appl. 265 (1997), 1-28. · Zbl 0884.15004
[27] J. Liesen and Z. Strakoš, Krylov Subspace Methods, Numer. Math. Sci. Comput., Oxford University, Oxford, 2013. · Zbl 1263.65034
[28] J. R. Munkres, Topology, Prentice Hall, Upper Saddle River, 2000. · Zbl 0951.54001
[29] A. S. Nemirovskiy and B. T. Polyak, Iterative methods for solving linear ill-posed problems under precise information. I, Izv. Akad. Nauk SSSR Tekhn. Kibernet. (1984), no. 2, 13-25, 203.
[30] A. S. Nemirovskiy and B. T. Polyak, Iterative methods for solving linear ill-posed problems under precise information. II, Eng. Cybernetics 22 (1984), 50-57. · Zbl 0825.65041
[31] S. Olver, GMRES for the differentiation operator, SIAM J. Numer. Anal. 47 (2009), no. 5, 3359-3373. · Zbl 1202.65036
[32] C. C. Paige and P. Van Dooren, Sensitivity analysis of the Lanczos reduction, Numer. Linear Algebra Appl. 6 (1999), 29-50. · Zbl 0982.65047
[33] A. Quarteroni, Numerical Models for Differential Problems, 3rd ed., MS&A. Model. Simul. Appl. 16, Springer, Cham, 2017.
[34] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., Society for Industrial and Applied Mathematics, Philadelphia, 2003. · Zbl 1002.65042
[35] S. Shkarin, A weighted bilateral shift with cyclic square is supercyclic, Bull. Lond. Math. Soc. 39 (2007), no. 6, 1029-1038. · Zbl 1137.47010
[36] J. A. Sifuentes, M. Embree and R. B. Morgan, GMRES convergence for perturbed coefficient matrices, with application to approximate deflation preconditioning, SIAM J. Matrix Anal. Appl. 34 (2013), no. 3, 1066-1088. · Zbl 1314.65051
[37] V. Simoncini and D. B. Szyld, Theory of inexact Krylov subspace methods and applications to scientific computing, SIAM J. Sci. Comput. 25 (2003), no. 2, 454-477. · Zbl 1048.65032
[38] V. Simoncini and D. B. Szyld, On the occurrence of superlinear convergence of exact and inexact Krylov subspace methods, SIAM Rev. 47 (2005), no. 2, 247-272. · Zbl 1079.65034
[39] A. A. Tuzhilin, Lectures on Hausdorff and Gromov-Hausdorff distance geometry, arXiv:2012.00756, preprint (2020), https://arxiv.org/abs/2012.00756.
[40] J. van den Eshof, G. L. G. Sleijpen and M. B. van Gijzen, Relaxation strategies for nested Krylov methods, J. Comput. Appl. Math. 177 (2005), no. 2, 347-365. · Zbl 1069.65033
[41] R. Winther, Some superlinear convergence results for the conjugate gradient method, SIAM J. Numer. Anal. 17 (1980), no. 1, 14-17. · Zbl 0447.65021
[42] F. Xue and H. C. Elman, Fast inexact subspace iteration for generalized eigenvalue problems with spectral transformation, Linear Algebra Appl. 435 (2011), no. 3, 601-622. · Zbl 1253.65059
[43] J.-P. M. Zemke, Abstract perturbed Krylov methods, Linear Algebra Appl. 424 (2007), no. 2-3, 405-434. · Zbl 1125.65029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.