×

The geodesic flow of the BGPP metric is Liouville integrable. (English) Zbl 1527.83039

Summary: We prove that the geodesics equations corresponding to the BGPP metric are integrable in the Liouville sense. The \(\mathrm{SO}(3, \mathbb{R})\) symmetry of the model allows to reduce the system from four to two degrees of freedom. Moreover, solutions of the reduced system and its degenerations can be given explicitly or reduced to a certain quadrature. In degenerated cases BGPP metric coincides with the Eguchi-Hanson metric and for this case the mentioned quadrature can be calculated explicitly in terms of elliptic integrals.

MSC:

83C40 Gravitational energy and conservation laws; groups of motions
53C22 Geodesics in global differential geometry
14D21 Applications of vector bundles and moduli spaces in mathematical physics (twistor theory, instantons, quantum field theory)
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)

References:

[1] Atiyah, M. F.; Hitchin, N. J., Phys. Lett. A, 107, 21-25 (1985) · Zbl 1177.53069 · doi:10.1016/0375-9601(85)90238-5
[2] Atiyah, M. F.; Hitchin, N. J., The Geometry and Dynamics of Magnetic Monopoles (2014), Princeton University Press
[3] Belinskii, V.; Gibbons, G. W.; Page, D. N.; Pope, C. N., Phys. Lett. B, 76, 433-5 (1978) · doi:10.1016/0370-2693(78)90899-7
[4] Dold, D., Class. Quantum Grav., 35 (2018) · Zbl 1391.83015 · doi:10.1088/1361-6382/aab62e
[5] Eguchi, T.; Hanson, A. J., Phys. Lett. B, 74, 249-51 (1978) · doi:10.1016/0370-2693(78)90566-X
[6] Eguchi, T.; Hanson, A. J., Ann. Phys., 120, 82-106 (1979) · Zbl 0409.53020 · doi:10.1016/0003-4916(79)90282-3
[7] Ghezelbash, A. M., Class. Quantum Grav., 39 (2022) · Zbl 1487.83007 · doi:10.1088/1361-6382/ac504e
[8] Gibbons, G. W.; Ruback, P. J., Commun. Math. Phys., 115, 267-300 (1988) · Zbl 0684.53074 · doi:10.1007/BF01466773
[9] Gradshteyn, I. S.; Ryzhik, I. M., Table of Integrals, Series and Products (2015), Elsevier/Academic · Zbl 1300.65001
[10] Gibbons, G. W.; Manton, N. S., Nucl. Phys. B, 274, 183-224 (1986) · doi:10.1016/0550-3213(86)90624-3
[11] Gibbons, G. W.; Olivier, D.; Ruback, P. J.; Valent, G., Nucl. Phys. B, 296, 676-96 (1988) · doi:10.1016/0550-3213(88)90039-9
[12] Gibbons, G. W., Class. Quantum Grav., 20, 4401-8 (2003) · Zbl 1047.83005 · doi:10.1088/0264-9381/20/20/305
[13] Hitchin, N., Monopoles, Minimal Surfaces and Algebraic Curves, vol 105 (1987), Les Presses de l’Université de Montréal · Zbl 0644.53059
[14] Katona, D.; Lucietti, J., Commun. Math. Phys., 399, 1151-201 (2023) · Zbl 1522.83201 · doi:10.1007/s00220-022-04576-7
[15] Landau, L,D; Lifshitz, E. M., Mechanics (Course of Theoretical Physics vol 1) (1997), Butterworth-Heinenann
[16] Markeev, A. P., Teoreticheskaya Mekhanika (R&C Dynamics) (1999), Institute of Computer Science
[17] Mignemi, S., J. Math. Phys., 32, 3047-54 (1991) · Zbl 0747.53014 · doi:10.1063/1.529050
[18] Valent, G., Comm. Math. Phys., 244, 571-94 (2004) · Zbl 1069.53044 · doi:10.1007/s00220-003-1002-6
[19] Valent, G.; Ben Yahia, H., Class. Quantum Grav., 24, 255-76 (2007) · Zbl 1107.83014 · doi:10.1088/0264-9381/24/2/001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.