×

Cosmology in Minkowski space. (English) Zbl 1527.83152

Summary: Theoretical and observational challenges to standard cosmology such as the cosmological constant problem and tensions between cosmological model parameters inferred from different observations motivate the development and search of new physics. A less radical approach to venturing beyond the standard model is the simple mathematical reformulation of our theoretical frameworks underlying it. While leaving physical measurements unaffected, this can offer a reinterpretation and even solutions of these problems. In this spirit, metric transformations are performed here that cast our Universe into different geometries. Of particular interest thereby is the formulation of cosmology in Minkowski space. Rather than an expansion of space, spatial curvature, and small-scale inhomogeneities and anisotropies, this frame exhibits a variation of mass, length and time scales across spacetime. Alternatively, this may be interpreted as an evolution of fundamental constants. As applications of this reframed cosmological picture, the naturalness of the cosmological constant is reinspected and promising candidates of geometric origin are explored for dark matter, dark energy, inflation and baryogenesis. An immediate observation thereby is the apparent absence of the cosmological constant problem in the Minkowski frame. The formalism is also applied to identify new observable signatures of conformal inhomogeneities, which have been proposed as simultaneous solution of the observational tensions in the Hubble constant, the amplitude of matter fluctuations, and the gravitational lensing amplitude of cosmic microwave background anisotropies. These are found to enhance redshifts to distant galaxy clusters and introduce a mass bias with cluster masses inferred from gravitational lensing exceeding those inferred kinematically or dynamically.

MSC:

83F05 Relativistic cosmology
35A30 Geometric theory, characteristics, transformations in context of PDEs
28D05 Measure-preserving transformations
85A04 General questions in astronomy and astrophysics
81P15 Quantum measurement theory, state operations, state preparations
51B20 Minkowski geometries in nonlinear incidence geometry
26E70 Real analysis on time scales or measure chains
83C56 Dark matter and dark energy
81V22 Unified quantum theories
81V80 Quantum optics

References:

[1] Weinberg, S., The cosmological constant problem, Rev. Mod. Phys., 61, 1-23 (1989) · Zbl 1129.83361 · doi:10.1103/RevModPhys.61.1
[2] Martin, J., Everything you always wanted to know about the cosmological constant problem (but were afraid to ask), C. R. Physique, 13, 566-665 (2012) · doi:10.1016/j.crhy.2012.04.008
[3] Bertone, G.; Hooper, D., History of dark matter, Rev. Mod. Phys., 90 (2018) · doi:10.1103/RevModPhys.90.045002
[4] Baumann, D., Inflation, Theoretical Advanced Study Institute in Elementary Particle Physics: Physics of the Large and the Small, 523-686 (2011), Singapore: World Scientific Publishing Company, Singapore · Zbl 1241.83003 · doi:10.1142/9789814327183_0010
[5] Linde, A., Inflationary Cosmology after Planck 2013, 100e Ecole d’Ete de Physique: Post-Planck Cosmology, 231-316 (2015), Oxford: Oxford University Press, Oxford · Zbl 1326.83008 · doi:10.1093/acprof:oso/9780198728856.003.0006
[6] Riotto, A., Theories of baryogenesis, ICTP Summer School in High-Energy Physics and Cosmology, 326-436 (1998)
[7] Canetti, L.; Drewes, M.; Shaposhnikov, M., Matter and antimatter in the universe, New J. Phys., 14 (2012) · Zbl 1448.85002 · doi:10.1088/1367-2630/14/9/095012
[8] Riess, A. G., A comprehensive measurement of the local value of the Hubble constant with 1 km s^−1 Mpc^−1 uncertainty from the Hubble space telescope and the SH0ES team, Astrophys. J. Lett., 934, L7 (2022) · doi:10.3847/2041-8213/ac5c5b
[9] Heymans, C., KiDS-1000 cosmology: multi-probe weak gravitational lensing and spectroscopic galaxy clustering constraints, Astron. Astrophys., 646, A140 (2021) · doi:10.1051/0004-6361/202039063
[10] Aghanim, N.; (Planck Collaboration), Planck 2018 results: VI. Cosmological parameters, Astron. Astrophys., 641, A6 (2020) · doi:10.1051/0004-6361/201833910
[11] Bull, P., Beyond ΛCDM: problems, solutions and the road ahead, Phys. Dark Univ., 12, 56-99 (2016) · doi:10.1016/j.dark.2016.02.001
[12] Perivolaropoulos, L.; Skara, F., Challenges for ΛCDM: an update, New Astron. Rev., 95 (2022) · doi:10.1016/j.newar.2022.101659
[13] Kunz, M., The dark degeneracy: on the number and nature of dark components, Phys. Rev. D, 80 (2009) · doi:10.1103/PhysRevD.80.123001
[14] Lombriser, L.; Taylor, A., Breaking a dark degeneracy with gravitational waves, J. Cosmol. Astropart. Phys., 03, 031 (2016) · doi:10.1088/1475-7516/2016/03/031
[15] Joyce, A.; Lombriser, L.; Schmidt, F., Dark energy versus modified gravity, Ann. Rev. Nucl. Part. Sci., 66, 95-122 (2016) · doi:10.1146/annurev-nucl-102115-044553
[16] Jana, S.; Dalang, C.; Lombriser, L., Horndeski theories and beyond from higher dimensions, Class. Quantum Grav., 38 (2021) · Zbl 1479.83273 · doi:10.1088/1361-6382/abc272
[17] Endean, G., Cosmology in conformally flat spacetime, Astrophys. J., 479, 40-45 (1997) · doi:10.1086/303862
[18] Iihoshi, M.; Ketov, S. V.; Morishita, A., Conformally flat FRW metrics, Prog. Theor. Phys., 118, 475-89 (2007) · Zbl 1137.83014 · doi:10.1143/PTP.118.475
[19] Ibison, M., On the conformal forms of the Robertson-Walker metric, J. Math. Phys., 48 (2007) · Zbl 1153.81379 · doi:10.1063/1.2815811
[20] Gron, O.; Johannesen, S., FRW universe models in conformally flat spacetime coordinates: I. General formalism, Eur. Phys. J. Plus, 126, 28 (2011) · doi:10.1140/epjp/i2011-11028-6
[21] Domènech, G.; Sasaki, M., Conformal frames in cosmology, Int. J. Mod. Phys. D, 25 (2016) · Zbl 1353.83029 · doi:10.1142/S0218271816450061
[22] Dalang, C.; Lombriser, L., Limitations on standard sirens tests of gravity from screening, J. Cosmol. Astropart. Phys., 10, 013 (2019) · Zbl 1515.83216 · doi:10.1088/1475-7516/2019/10/013
[23] Wetterich, C., Universe without expansion, Phys. Dark Univ., 2, 184-7 (2013) · doi:10.1016/j.dark.2013.10.002
[24] Postma, M.; Volponi, M., Equivalence of the Einstein and Jordan frames, Phys. Rev. D, 90 (2014) · doi:10.1103/PhysRevD.90.103516
[25] Lombriser, L., Consistency of the local Hubble constant with the cosmic microwave background, Phys. Lett. B, 803 (2020) · doi:10.1016/j.physletb.2020.135303
[26] Bose, B.; Lombriser, L., Easing cosmic tensions with an open and hotter universe, Phys. Rev. D, 103 (2021) · doi:10.1103/PhysRevD.103.L081304
[27] Visser, M., Conformally Friedmann-Lemaître-Robertson-Walker cosmologies, Class. Quantum Grav., 32 (2015) · Zbl 1323.83040 · doi:10.1088/0264-9381/32/13/135007
[28] Blanco, D. S.; Lombriser, L., Exploring the self-tuning of the cosmological constant from Planck mass variation, Class. Quantum Grav., 38 (2021) · Zbl 1480.83125 · doi:10.1088/1361-6382/ac3148
[29] Dai, L.; Pajer, E.; Schmidt, F., On separate universes, J. Cosmol. Astropart. Phys., 10, 059 (2015) · doi:10.1088/1475-7516/2015/10/059
[30] Naidu, R. P., Two remarkably luminous galaxy candidates at z ≈10-12 revealed by JWST, Astrophys. J. Lett., 940, L14 (2022) · doi:10.3847/2041-8213/ac9b22
[31] Castellano, M., Early results from GLASS-JWST: III. galaxy candidates at z 9-15, Astrophys. J. Lett., 938, L15 (2022) · doi:10.3847/2041-8213/ac94d0
[32] Robertson, B. E., Discovery and properties of the earliest galaxies with confirmed distances
[33] Karachentsev, I. D.; Telikova, K. N., Stellar and dark matter density in the local universe, Astron. Nachr., 339, 615-22 (2018) · doi:10.1002/asna.201813520
[34] Böhringer, H.; Chon, G.; Collins, C. A., Observational evidence for a local underdensity in the universe and its effect on the measurement of the Hubble constant, Astron. Astrophys., 633, A19 (2020) · doi:10.1051/0004-6361/201936400
[35] Tully, R. B.; Pomarede, D.; Graziani, R.; Courtois, H. M.; Hoffman, Y.; Shaya, E. J., Cosmicflows-3: cosmography of the local void, Astrophys. J., 880, 24 (2019) · doi:10.3847/1538-4357/ab2597
[36] Ade, P. A R.; (Planck Collaboration), Planck 2013 results. XX. Cosmology from Sunyaev-Zeldovich cluster counts, Astron. Astrophys., 571, A20 (2014) · doi:10.1051/0004-6361/201321521
[37] Terukina, A.; Lombriser, L.; Yamamoto, K.; Bacon, D.; Koyama, K.; Nichol, R. C., Testing chameleon gravity with the Coma cluster, J. Cosmol. Astropart. Phys., 04, 013 (2014) · doi:10.1088/1475-7516/2014/04/013
[38] Kennedy, J.; Lombriser, L.; Taylor, A., Reconstructing Horndeski theories from phenomenological modified gravity and dark energy models on cosmological scales, Phys. Rev. D, 98 (2018) · doi:10.1103/PhysRevD.98.044051
[39] Marsh, D. J E., Axion cosmology, Phys. Rep., 643, 1-79 (2016) · doi:10.1016/j.physrep.2016.06.005
[40] Starobinsky, A. A., Spectrum of relict gravitational radiation and the early state of the universe, JETP Lett., 30, 682-5 (1979)
[41] Davoudiasl, H.; Kitano, R.; Kribs, G. D.; Murayama, H.; Steinhardt, P. J., Gravitational baryogenesis, Phys. Rev. Lett., 93 (2004) · doi:10.1103/PhysRevLett.93.201301
[42] Hook, A., Baryogenesis from Hawking radiation, Phys. Rev. D, 90 (2014) · doi:10.1103/PhysRevD.90.083535
[43] Boudon, A.; Bose, B.; Huang, H.; Lombriser, L., Baryogenesis through asymmetric Hawking radiation from primordial black holes as dark matter, Phys. Rev. D, 103 (2021) · doi:10.1103/PhysRevD.103.083504
[44] Bahamonde, S.; Dialektopoulos, K. F.; Escamilla-Rivera, C.; Farrugia, G.; Gakis, V.; Hendry, M.; Hohmann, M.; Levi Said, J.; Mifsud, J.; Di Valentino, E., Teleparallel gravity: from theory to cosmology, Rept. Prog. Phys., 86 (2023) · doi:10.1088/1361-6633/ac9cef
[45] Bernardo, R. C.; Said, J. L.; Caruana, M.; Appleby, S., Well-tempered Minkowski solutions in teleparallel Horndeski theory, Class. Quantum Grav., 39 (2022) · Zbl 1531.83142 · doi:10.1088/1361-6382/ac36e4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.