×

Black hole minimum size and scalar charge in shift-symmetric theories. (English) Zbl 1517.83052

Summary: It is known that, for shift-symmetric scalars, only a linear coupling with the Gauss-Bonnet (GB) invariant can introduce black hole hair. Such hairy black holes have a minimum mass, determined by the coupling of this interaction, and a scalar charge that is uniquely determined by their mass and spin for a fixed value of that coupling. Here we explore how additional shift-symmetric interactions affect the structure of the black hole, the value of the minimum mass, and the scalar charge.

MSC:

83C57 Black holes
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C60 Spinor and twistor methods in general relativity and gravitational theory; Newman-Penrose formalism
22E70 Applications of Lie groups to the sciences; explicit representations

References:

[1] Abbott, B. P.; (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett., 116 (2016) · doi:10.1103/PhysRevLett.116.061102
[2] Abbott, B. P.; (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. X, 9 (2019) · doi:10.1103/PhysRevX.9.031040
[3] Abbott, R.; (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. X, 11 (2021) · doi:10.1103/PhysRevX.11.021053
[4] Abbott, R.; (The LIGO Scientific Collaboration, the Virgo Collaboration) (2021)
[5] Abbott, R.; (The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration) (2021)
[6] Barack, L., Class. Quantum Grav., 36 (2019) · doi:10.1088/1361-6382/ab0587
[7] Sathyaprakash, B. S. (2019)
[8] Barausse, E., Gen. Relativ. Gravit., 52, 81 (2020) · doi:10.1007/s10714-020-02691-1
[9] Kalogera, V. (2021)
[10] Arun, K. G.; (Lisa), Living Rev. Relativ., 25, 4 (2022) · doi:10.1007/s41114-022-00036-9
[11] Hawking, S. W., Commun. Math. Phys., 25, 152-66 (1972) · doi:10.1007/BF01877517
[12] Carter, B., Phys. Rev. Lett., 26, 331-3 (1971) · doi:10.1103/PhysRevLett.26.331
[13] Bekenstein, J. D., Phys. Rev. Lett., 28, 452-5 (1972) · doi:10.1103/PhysRevLett.28.452
[14] Teitelboim, C., Phys. Rev. D, 5, 2941-54 (1972) · doi:10.1103/PhysRevD.5.2941
[15] Sotiriou, T. P., Class. Quantum Grav., 32 (2015) · Zbl 1329.83005 · doi:10.1088/0264-9381/32/21/214002
[16] Herdeiro, C. A R.; Radu, E., Int. J. Mod. Phys. D, 24 (2015) · Zbl 1339.83008 · doi:10.1142/S0218271815420146
[17] Bekenstein, J. D., Phys. Rev. D, 51, R6608 (1995) · doi:10.1103/PhysRevD.51.R6608
[18] Sotiriou, T. P.; Faraoni, V., Phys. Rev. Lett., 108 (2012) · doi:10.1103/PhysRevLett.108.081103
[19] Mignemi, S.; Stewart, N. R., Phys. Lett. B, 298, 299-304 (1993) · doi:10.1016/0370-2693(93)91824-7
[20] Kanti, P.; Mavromatos, N. E.; Rizos, J.; Tamvakis, K.; Winstanley, E., Phys. Rev. D, 54, 5049-58 (1996) · doi:10.1103/PhysRevD.54.5049
[21] Yunes, N.; Stein, L. C., Phys. Rev. D, 83 (2011) · doi:10.1103/PhysRevD.83.104002
[22] Hui, L.; Nicolis, A., Phys. Rev. Lett., 110 (2013) · doi:10.1103/PhysRevLett.110.241104
[23] Sotiriou, T. P.; Zhou, S. Y., Phys. Rev. Lett., 112 (2014) · doi:10.1103/PhysRevLett.112.251102
[24] Sotiriou, T. P.; Zhou, S. Y., Phys. Rev. D, 90 (2014) · doi:10.1103/PhysRevD.90.124063
[25] Fernandes, P. G S.; Mulryne, D. J.; Delgado, J. F M., Class. Quantum Grav., 39 (2022) · Zbl 1515.83143 · doi:10.1088/1361-6382/aca010
[26] Charmousis, C.; Lehébel, A.; Smyrniotis, E.; Stergioulas, N., J. Cosmol. Astropart. Phys., JCAP02(2022)033 (2022) · Zbl 1487.85012 · doi:10.1088/1475-7516/2022/02/033
[27] Lyu, ZJiang, NYagi, K2022Phys. Rev. D105064001; Lyu, ZJiang, NYagi, K2022Phys. Rev. D106069901(Erratum) · doi:10.1103/PhysRevD.106.069901
[28] Perkins, S. E.; Nair, R.; Silva, H. O.; Yunes, N., Phys. Rev. D, 104 (2021) · doi:10.1103/PhysRevD.104.024060
[29] Maselli, A.; Franchini, N.; Gualtieri, L.; Sotiriou, T. P., Phys. Rev. Lett., 125 (2020) · doi:10.1103/PhysRevLett.125.141101
[30] Maselli, A.; Franchini, N.; Gualtieri, L.; Sotiriou, T. P.; Barsanti, S.; Pani, P., Nat. Astron., 6, 464-70 (2022) · doi:10.1038/s41550-021-01589-5
[31] Witek, H.; Gualtieri, L.; Pani, P.; Sotiriou, T. P., Phys. Rev. D, 99 (2019) · doi:10.1103/PhysRevD.99.064035
[32] Hui, L.; Podo, A.; Santoni, L.; Trincherini, E., J. High Energy Phys., JHEP12(2021)183 (2021) · Zbl 1521.83121 · doi:10.1007/JHEP12(2021)183
[33] Saravani, M.; Sotiriou, T. P., Phys. Rev. D, 99 (2019) · doi:10.1103/PhysRevD.99.124004
[34] Horndeski, G. W., Int. J. Theor. Phys., 10, 363-84 (1974) · doi:10.1007/BF01807638
[35] Deffayet, C.; Deser, S.; Esposito-Farese, G., Phys. Rev. D, 80 (2009) · doi:10.1103/PhysRevD.80.064015
[36] Kobayashi, T.; Yamaguchi, M.; Yokoyama, J., Prog. Theor. Phys., 126, 511-29 (2011) · Zbl 1243.83080 · doi:10.1143/PTP.126.511
[37] Babichev, E.; Charmousis, C.; Lehébel, A., J. Cosmol. Astropart. Phys., JCAP04(2017)027 (2017) · Zbl 1515.83122 · doi:10.1088/1475-7516/2017/04/027
[38] Creminelli, P.; Loayza, N.; Serra, F.; Trincherini, E.; Trombetta, L. G., J. High Energy Phys., JHEP08(2020)045 (2020) · Zbl 1454.83055 · doi:10.1007/JHEP08(2020)045
[39] Antoniou, G.; Bakopoulos, A.; Kanti, P., Phys. Rev. Lett., 120 (2018) · doi:10.1103/PhysRevLett.120.131102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.