×

Nonlinear stability of self-gravitating massive fields. A wave-Klein-Gordon model. (English) Zbl 1517.83063

Summary: In recent years, significant progress has been made in understanding the global evolution of self-gravitating massive matter in the small-perturbative regime near Minkowski spacetime. To investigate the interaction between a Klein-Gordon equation and Einstein’s field equations, we developed a new approach called the Euclidean-hyperboloidal foliation method. This method involves constructing a spacetime foliation that is well-suited for deriving precise decay estimates for wave and Klein-Gordon equations in curved spacetime. In this article, we provide an overview of our method and present a complete proof for a wave-Klein-Gordon model that captures some of the key challenges associated with the Einstein-matter system.

MSC:

83E05 Geometrodynamics and the holographic principle
35B20 Perturbations in context of PDEs
51B20 Minkowski geometries in nonlinear incidence geometry
81R25 Spinor and twistor methods applied to problems in quantum theory
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
81U90 Particle decays

References:

[1] Bieri, L., An extension of the stability theorem of the Minkowski space in general relativity, J. Differ. Geom., 86, 17-70 (2010) · Zbl 1213.83025 · doi:10.4310/jdg/1299766683
[2] Bigorgne, L.; Fajman, D.; Joudioux, J.; Smulevici, J.; Thaller, M., Asymptotic stability of Minkowski space-time with non-compactly supported massless Vlasov matter, Arch. Ration. Mech. Anal., 242, 1-147 (2021) · Zbl 1471.83003 · doi:10.1007/s00205-021-01639-2
[3] Choquet-Bruhat, Y., General Relativity and the Einstein Equations (Oxford Mathematical Monograph) (2009), Oxford: Oxford University Press, Oxford · Zbl 1157.83002
[4] Christodoulou, D.; Klainerman, S., The Global Nonlinear Stability of the Minkowski Space (Princeton Mathematical Series vol 41) (1993), Princeton, NJ: Princeton University Press, Princeton, NJ · Zbl 0733.35105
[5] Dong, S.; LeFloch, P. G.; Wyatt, Z., Global evolution of the U(1) Higgs Boson: nonlinear stability and uniform energy bounds, Ann. Henri Poincare, 22, 677-713 (2021) · Zbl 1469.35182 · doi:10.1007/s00023-020-00955-9
[6] Fajman, D.; Joudioux, J.; Smulevici, J., A vector field method for relativistic transport equations with applications, Ana. PDE, 10, 1539-612 (2017) · Zbl 1373.35046 · doi:10.2140/apde.2017.10.1539
[7] Fajman, D.; Joudioux, J.; Smulevici, J., Sharp asymptotics for small data solutions of the Vlasov-Nordström system in three dimensions (2017)
[8] Fajman, D.; Joudioux, J.; Smulevici, J., The stability of the Minkowski space for the Einstein-Vlasov system, Anal. PDE, 14, 425-531 (2021) · Zbl 1476.83007 · doi:10.2140/apde.2021.14.425
[9] Fourés-Bruhat, Y., Théorèmes d’existence pour certains systèmes d’équations aux dérivées partielles non-linéaires, Acta Math., 88, 42-225 (1952) · Zbl 0049.19201 · doi:10.1007/BF02392131
[10] Hintz, P.; Vasy, A., The global non-linear stability of the Kerr-de Sitter family of black holes, Acta Math., 220, 1-206 (2018) · Zbl 1391.83061 · doi:10.4310/ACTA.2018.v220.n1.a1
[11] Hintz, P.; Vasy, A., Stability of Minkowski space and polyhomogeneity of the metric, Ann. PDE, 6, 2 (2020) · Zbl 1462.35389 · doi:10.1007/s40818-020-0077-0
[12] Huneau, C.; Stingo, A., Global well-posedness for a system of quasi-linear wave equations on a product space (2021)
[13] Ifrim, M.; Stingo, A., Almost global well-posedness for quasi-linear strongly coupled wave-Klein-Gordon systems in two space dimensions (2019)
[14] Ionescu, A. D.; Pausader, B., Global solutions of quasi-linear systems of Klein-Gordon equations in 3D, J. Eur. Math. Soc., 16, 2355-431 (2015) · Zbl 1316.35180 · doi:10.4171/JEMS/489
[15] Ionescu, A. D.; Pausader, B., On the global regularity for a wave-Klein-Gordon coupled system, Acta Math. Sin., 35, 933-86 (2019) · Zbl 1420.35057 · doi:10.1007/s10114-019-8413-6
[16] Ionescu, A. D.; Pausader, B., The Einstein-Klein-Gordon Coupled System: Global Stability of the Minkowski Solution (2021), Princeton, NJ: Princeton University Press, Princeton, NJ
[17] Kauffman, C.; Lindblad, H., Global stability of Minkowski space for the Einstein-Maxwell-Klein-Gordon system in generalized wave coordinates (2023)
[18] Klainerman, S., Global existence of small amplitude solutions to nonlinear Klein-Gordon equations in four spacetime dimensions, Commun. Pure Appl. Math., 38, 631-41 (1985) · Zbl 0597.35100 · doi:10.1002/cpa.3160380512
[19] Klainerman, S., Remarks on the global Sobolev inequalities in the Minkowski space \(####\), Commun. Pure Appl. Math., 40, 111-7 (1987) · Zbl 0686.46019 · doi:10.1002/cpa.3160400105
[20] LeFloch, P. G.; Ma, Y., The Hyperboloidal Foliation Method (2014), Singapore: World Scientific Press, Singapore · Zbl 1320.53001
[21] LeFloch, P. G.; Ma, Y., The global nonlinear stability of Minkowski spacetime for the Einstein equations in presence of massive fields, C. R. Acad. Sci., Paris, 354, 948-53 (2016) · Zbl 1347.83008 · doi:10.1016/j.crma.2016.07.008
[22] LeFloch, P. G.; Ma, Y., The global nonlinear stability of Minkowski space for self-gravitating massive fields. The wave-Klein-Gordon model, Commun. Math. Phys., 346, 603-65 (2016) · Zbl 1359.83003 · doi:10.1007/s00220-015-2549-8
[23] LeFloch, P. G.; Ma, Y., The Global Nonlinear Stability of Minkowski Space for Self-Gravitating Massive Fields (2018), Singapore: World Scientific Press, Singapore · Zbl 1434.83005
[24] LeFloch, P. G.; Ma, Y., Nonlinear stability of self-gravitating massive fields (2022)
[25] LeFloch, P. G.; Ma, Y., Einstein-Klein-Gordon spacetimes in the harmonic near-Minkowski regime, Port. Math., 79, 343-93 (2022) · Zbl 1515.83035 · doi:10.4171/PM/2084
[26] LeFloch, P. G.; Nguyen, T-C, The seed-to-solution method for the Einstein equations and the asymptotic localization problem (2023)
[27] LeFloch, P. G.; Wei, C-H, Boundedness of the total energy of relativistic membranes evolving in a curved spacetime, J. Differ. Equ., 265, 312-31 (2018) · Zbl 1390.35357 · doi:10.1016/j.jde.2018.02.032
[28] Lindblad, H.; Rodnianski, I., Global existence for the Einstein vacuum equations in wave coordinates, Commun. Math. Phys., 256, 43-110 (2005) · Zbl 1081.83003 · doi:10.1007/s00220-004-1281-6
[29] Lindblad, H.; Rodnianski, I., The global stability of Minkowski spacetime in harmonic gauge, Ann. Math., 171, 1401-77 (2010) · Zbl 1192.53066 · doi:10.4007/annals.2010.171.1401
[30] Lindblad, H.; Taylor, M., Global stability of Minkowski space for the Einstein-Vlasov system in the harmonic gauge (2017)
[31] Ma, Y., Global solutions of nonlinear wave-Klein-Gordon system in one space dimension, Nonlinear Anal. Theor., 191, 111-641 (2020) · Zbl 1439.35319 · doi:10.1016/j.na.2019.111641
[32] Ma, Y., Global solutions of nonlinear wave-Klein-Gordon system in two spatial dimensions: a prototype of strong coupling case, J. Differ. Equ., 287, 236-94 (2021) · Zbl 1462.35191 · doi:10.1016/j.jde.2021.03.047
[33] Smulevici, J., Small data solutions of the Vlasov-Poisson system and the vector field method, Ann. PDE, 11, 11-66 (2016) · Zbl 1397.35033 · doi:10.1007/s40818-016-0016-2
[34] Tataru, D., Strichartz estimates in the hyperbolic space and global existence for the semi-linear wave equation, Trans. Am. Math. Soc., 353, 795-807 (2001) · Zbl 0956.35088 · doi:10.1090/S0002-9947-00-02750-1
[35] Wang, Q., An intrinsic hyperboloid approach for Einstein Klein-Gordon equations, J. Differ. Geom., 115, 27-109 (2020) · Zbl 1444.53043 · doi:10.4310/jdg/1586224841
[36] Wong, W. W Y., A commuting vector field approach to some dispersive estimates, Arch. Math., 110, 273-89 (2018) · Zbl 1384.35108 · doi:10.1007/s00013-017-1114-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.