×

How many cards should you lay out in a game of EvenQuads: a detailed study of caps in \(\mathrm{AG}(n, 2)\). (English) Zbl 1522.05025

In the paper under review, the authors consider sets \(\mathcal{O}\) of points in \(\mathrm{AG}(n, 2)\) such that any four points of \(\mathcal{O}\) are in general position. Equivalently, no affine plane is contained in \(\mathcal{O}\). All such sets of size at most \(9\) in \(\mathrm{AG}(n, 2)\) are classified, up to affine equivalence. Moreover, the complete and maximal sets of this type in \(\mathrm{AG}(n, 2)\), \(n \le 6\), are characterized.

MSC:

05B25 Combinatorial aspects of finite geometries
51E10 Steiner systems in finite geometry
51E15 Finite affine and projective planes (geometric aspects)

References:

[1] Pereira, J.: SuperSET. Undergraduate Thesis, Bard College (2013)
[2] Rose, L.: Quads: a SET-like game with a Twist. In: MAA Notes Series (to appear)
[3] For Women in Math A: EvenQuads Website. https://awm-math.org/publications/playing-cards/
[4] Rose, L., Van Huyck, C.: Quads App (2021). https://drlaurenrose.github.io/QUADS/
[5] Bennett, M., Bounds on sizes of generalized caps in \(AG(n, q)\) via the Croot-Lev-Pach polynomial method, J. Comb. Theory A, 168, 255-271 (2019) · Zbl 1421.05027 · doi:10.1016/j.jcta.2019.06.001
[6] Tait, M.; Won, R., Improved bounds on sizes of generalized caps in \(AG(n, q)\), SIAM J. Discrete Math., 35, 1, 521-531 (2021) · Zbl 1466.51004 · doi:10.1137/20M1369439
[7] Ellenberg, JS; Gijswijt, D., On large subsets of \({\mathbb{F}}^n_q\) with no three-term arithmetic progression, Ann. Math. (2), 185, 1, 339-343 (2017) · Zbl 1425.11020 · doi:10.4007/annals.2017.185.1.8
[8] Croot, E.; Lev, VF; Pach, PP, Progression-free sets in \({\mathbb{Z} }^n_4\) are exponentially small, Ann. Math. (2), 185, 1, 331-337 (2017) · Zbl 1425.11019 · doi:10.4007/annals.2017.185.1.7
[9] Davis, BL; Maclagan, D., The card game SET, Math. Intell., 25, 3, 33-40 (2003) · Zbl 1109.91013 · doi:10.1007/BF02984846
[10] McMahon, L., Gordon, G., Gordon, H., Gordon, R.: The many mathematical dimensions of a seemingly simple card game. In: The Joy of SET, p. 306. Princeton University Press, Princeton; National Museum of Mathematics, New York (2017) · Zbl 1388.00011
[11] Redman, M.; Rose, L.; Walker, R., A small maximal Sidon set in \({\mathbb{Z} }_2^n\), SIAM J. Discrete Math., 36, 3, 1861-1867 (2022) · Zbl 1506.11018 · doi:10.1137/21M1454663
[12] Follett, M.; Kalail, K.; McMahon, E.; Pelland, C.; Won, R., Partitions of \(AG(4,3)\) into maximal caps, Discrete Math., 337, 1-8 (2014) · Zbl 1301.05052 · doi:10.1016/j.disc.2014.08.002
[13] Walker, R.: Qap Visualizer. https://slickytail.github.io/QuadsVis/index.html. Accessed 18 July 2022
[14] McMahon, L.: SET Cap-Builder App. https://webbox.lafayette.edu/ mcmahone/capbuilder.html. Accessed 28 July 2022
[15] Audin, M.: Geometry. Universitext, p. 357 (Translated from the 1998 French original). Springer, Berlin (2003). doi:10.1007/978-3-642-56127-6 · Zbl 1043.51001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.