×

On the geometric sensitivity of the MEG inversion algorithm. (English) Zbl 1519.92116

Summary: Magnetoencephalography (MEG) is a non-invasive technique that measures the magnetic fields produced by brain’s electrical currents. The basic inverse problem of magnetoencephalography (MEG) consists in estimating the neuronal current in the brain from the measurement of the magnetic field outside the head. The relative inversion algorithms, existing in medical devices, for the identification of excitation sources inside the brain using MEG data, are based on the assumption that the geometry of the brain-head system is spherical. Here, we present the error of identification of the dipole \((\boldsymbol{r}_0, \boldsymbol{Q})\) using the inversion algorithm of spherical geometry. In particular, taking magnetoencephalographic measurements from realistic ellipsoidal model and using these data in a spherical model lead to a structural error. For the purpose of this paper, we make numerical investigation for different positions of the source, especially, locating sources at different depths and see how the error depends on depth. These results may have useful implications for the interpretation of the reconstructions obtained via the existing approaches.

MSC:

92C55 Biomedical imaging and signal processing

References:

[1] Dassios, G.; Fokas, AS, Electro-Encephalography Magneto-Encephalography. An AnalyticNumerical Approach (2020), Boston: De Gruyter, Boston · Zbl 1454.92019 · doi:10.1515/9783110547535
[2] Ammari, H.; Kang, H., Reconstruction of Small inhomogeneities from Boundary Measurements. Lecture Notes in Mathematics (2004), Berlin: Springer, Berlin · Zbl 1113.35148 · doi:10.1007/b98245
[3] El Badia, A.; Duong, TH, Some remarks on the problem of source identification from boundary measurements, Inverse Prob., 14, 883-891 (1998) · Zbl 0916.35135 · doi:10.1088/0266-5611/14/4/008
[4] El Badia, A.; Ha-Duong, T., An inverse source problem in potential analysis, Inverse Prob., 16, 651-663 (2000) · Zbl 0963.35194 · doi:10.1088/0266-5611/16/3/308
[5] Berg, P.; Scherg, M., A fast method for forward computation of multiple-shell spherical head models, Electroencephalogr. Clin. Neurophysiol., 90, 58-64 (1994) · doi:10.1016/0013-4694(94)90113-9
[6] Dassios, G.; Kariotou, F.; Fotiadis; Massalas, C., The effect of an ellipsoidal shell on the direct EEG problem D, Advances in Scattering and Biomedical Engineering, 495-503 (2004), Singapore: World Scientific, Singapore · doi:10.1142/9789812702593_0052
[7] Kariotou, F., Electroencephalography in ellipsoidal coordinates, J. Math. Anal. Appl., 290, 324-342 (2004) · Zbl 1037.92021 · doi:10.1016/j.jmaa.2003.09.066
[8] Dassios, G.; Hadjiloizi, D., On the non-uniqueness of the inverse EEG problem, Inverse Prob., 25 (2009) · Zbl 1180.35551 · doi:10.1088/0266-5611/25/11/115012
[9] Dassios, G.; Ammari, H., Electric and magnetic activity of the brain in spherical and ellipsoidal geometry, Mathematical Modeling in Biomedical Imaging, 133-202 (2009), Berlin: Springer, Berlin
[10] Dassios, G.; Fokas, AS, Electro-magneto-encephalography for a three-shell model: a single dipole in ellipsoidal geometry, Math. Methods Appl. Sci., 35, 1415-1422 (2012) · Zbl 1250.92022 · doi:10.1002/mma.2508
[11] Fokas, AS, Electromagnetoencephalography for the three-shell model: distributed current in arbitrary, spherical and ellipsoidal geometries, J. R. Soc. Interface, 6, 479-488 (2019) · doi:10.1098/rsif.2008.0309
[12] Giapalaki, SN; Kariotou, F., The complete ellipsoidal shell-model in EEG imaging, Abstr. Appl. Anal., 2006, 1-18 (2006) · Zbl 1129.92047 · doi:10.1155/AAA/2006/57429
[13] Gutierrez, D., Nehorai, A.: Array response kernels for EEG/MEG in single-shell ellipsoidal geometry. In: 1st IEEE international workshop computational advances in multi-sensor adaptive processing, pp. 225-228 (2005).
[14] Gutierrez, D.; Nehorai, A.; Preissi, H., Ellipsoidal head model for fetal magneto-encephalography: forward and inverse solutions, Phys. Med. Biol., 50, 2141-2157 (2005) · doi:10.1088/0031-9155/50/9/015
[15] Gutierrez, D.; Nehorai, A., Array response kernels for EEG and MEG in multi-layer ellipsoidal geometry, IEEE Trans. Biomed. Eng., 55, 1103-1111 (2008) · doi:10.1109/TBME.2007.906493
[16] Hashemzadeh, P.; Fokas, AS, Helmholtz decomposition of the neuronal current for the ellipsoidal head model, Inverse Prob. (2019) · Zbl 1405.92134 · doi:10.1088/1361-6420/aaedc4
[17] de Munck, JC; Van Dijk, BW; Spekreijse, H., Mathematical dipoles are adequate to describe realistic generators of human brain activity, IEEE Trans. Biomed. Eng., 35, 960-966 (1988) · doi:10.1109/10.8677
[18] Dassios, G.; Fokas, AS, Electro-magneto-encephalography for a three-shell model: dipoles and beyond for the spherical geometry, Inverse Prob., 25, 1-20 (2009) · Zbl 1169.35386 · doi:10.1088/0266-5611/25/3/035001
[19] Dassios, G., Doschoris, M., Fragoyannis, G.: The influence of surface deformation on the EEG recordings. In: Proceeding of the 13th IEEE international conference on bioinformatics and bioengineering (BIBE-2013), (978-1-4799-7/13-paper 58, 2013 IEEE), Chania (2013).
[20] Dassios, G.; Doschoris, M.; Satrazemi, K., Localizing brain activity from multiple distinct sources via EEG, J. Appl. Math. (2014) · Zbl 1437.92069 · doi:10.1155/2014/232747
[21] Dassios, G.; Doschoris, M.; Fragoyannis, G., Sensitivity analysis of the forward EEG problem depending on head shape variation, Math. Problems Eng. (2015) · doi:10.1155/2015/612528
[22] Dassios, G.; Fragoyannis, G.; Satrazemi, K., Discriminating simple from double sources via EEG and MEG measurements, Math. Methods Appl. Sci., 217, 6187-6191 (2017) · Zbl 1375.35069 · doi:10.1002/mma.3939
[23] Dassios, G.; Fokas, AS; Hashemzadeh, P.; Leahy, RM, EEG for current with two dimensional support, IEEE Trans. Biomed. Eng., 65, 2101-2108 (2018) · doi:10.1109/TBME.2017.2785342
[24] Fokas, A.; Hashemzadeh, P.; Leahy, RM; Fokas, AS, Which part of the neuronal current can be determined by EEG, Oxford Handbook of Clinical Magnetoencephalography (2019), Oxford: Oxford University Press, Oxford
[25] Dassios, G., Ellipsoidal Harmonics-Theory and Applications (2012), Cambridge: Cambridge University Press, Cambridge · Zbl 1252.35001 · doi:10.1017/CBO9781139017749
[26] Ilmoniemi, RJ; Hämäläinen, MS; Knuutila, J.; Weinberg, H.; Stroink, G.; Katila, T., The forward and inverse problems in the spherical model, Biomagnetism: Application and Theory, 278-282 (1985), New York: Pergamon Press, New York
[27] Morse, PM; Feshbach, H., Methods of Theoretical Physics (1953), New York: McGraw-Hill, New York · Zbl 0051.40603
[28] Fokas, AS; Hauk, O.; Michel, V., Electro-magneto-encephalography for the three-shell model: numerical implementation via splines for distributed current in spherical geometry, Inverse Prob., 28 (2012) · Zbl 1243.78030 · doi:10.1088/0266-5611/28/3/035009
[29] Cuffin, BN, A method for localizing EEG sources in realistic head models, IEEE Trans. Biomed. Eng., 42, 68-70 (1995) · doi:10.1109/10.362917
[30] Dannhauer, M.; Lanfer, B.; Wolters, CH; Knösche, TR, Modeling of the human skull in EEG source analysis, Hum. Brain Mapp., 32, 1383-1399 (2011) · doi:10.1002/hbm.21114
[31] Geselowitz, DB, On bioelectric potentials in an inhomogeneous volume conductor, Biophysics, 7, 1, 1-11 (1967)
[32] Hämäläinen, M.; Sarvas, J., Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data, IEEE Trans. Biomed. Eng., 2, 165-171 (1989) · doi:10.1109/10.16463
[33] Landau, LD; Lifshitz, EM, Electrodynamics of Continuous Media (1960), New York: Pergamon Press, New York · Zbl 0122.45002
[34] Nunez, PL; Srinivasan, R., Electric Fields of the Brain: The Neurophysics of EEG (2006), Oxford: Oxford University Press, Oxford · doi:10.1093/acprof:oso/9780195050387.001.0001
[35] Plonsey, R.; Heppner, DB, Considerations of quasi-stationarity in electrophysiological systems, Bull. Math. Biophys., 29, 657-664 (1967) · doi:10.1007/BF02476917
[36] Sarvas, J., Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem, Phys. Med. Biol., 32, 11-22 (1987) · doi:10.1088/0031-9155/32/1/004
[37] Brand, L., Vector and Tensor Analysis (1947), London: Wiley, London · Zbl 0032.30602
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.