×

Conditional quantum circuit Born machine based on a hybrid quantum-classical framework. (English) Zbl 07689648

Summary: As a branch of machine learning, generative models are widely used in supervised and unsupervised learning. To speedup certain machine learning tasks, quantum generative adversarial networks, quantum circuit Born machine (QCBM), and quantum Boltzmann machine have been proposed. These generative models can implement some specific generative tasks but have no control over the modes of the generated data. To make the generative model more intelligent and controllable, additional conditional information (such as category labels for MNIST digits) can be added to the model to guide the generation of data. A more in-depth study was carried out based on the QCBM, and a conditional quantum circuit Born machine (CQCBM) based on a hybrid quantum-classical (HQC) framework was proposed. The conditional information was encoded by adding extra qubits to guide the model training process. Experiments were conducted on both mixed Gaussian distribution and MNIST handwritten digit dataset. Numerical and experimental results show that the proposed CQCBM is able to generate the target distribution while satisfying the conditional constraints well. Compared to other conditional quantum generative models only applied to Bars and Stripes (BAS) or Chessboard datasets, the proposed model also performed well on more difficult image-generating tasks.

MSC:

82-XX Statistical mechanics, structure of matter

Software:

PennyLane
Full Text: DOI

References:

[1] Harshvardhan, G. M.; Gourisaria, M. K.; Pandey, M., A comprehensive survey and analysis of generative models in machine learning, Comp. Sci. Rev., 38, Article 100285 pp. (2020) · Zbl 1484.68187
[2] P. Liu, S. Han, Z. Meng, et al., Facial expression recognition via a boosted deep belief network, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 1805-1812.
[3] R. Krestel, P. Fankhauser, W. Nejdl, Latent dirichlet allocation for tag recommendation, in: Proceedings of the Third ACM Conference on Recommender Systems, 2009, pp. 61-68.
[4] Li, Y.; Pan, Q.; Wang, S., A generative model for category text generation, Inform. Sci., 450, 301-315 (2018)
[5] Reynolds, D. A., Gaussian mixture models, Encyclopedia Biometr., 741, 659-663 (2009)
[6] Bahl, L. R.; Brown, P. F.; Souza, P. V.de., Estimating hidden Markov model parameters so as to maximize speech recognition accuracy, IEEE Trans. Speech Audio Process., 1, 1, 77-83 (1993)
[7] Blei, D. M.; Ng, A. Y.; I., Jordan M., Latent dirichlet allocation, J. Mach. Learn. Res., 3, 993-1022 (2003) · Zbl 1112.68379
[8] R. Salakhutdinov, H. Larochelle, Efficient learning of deep Boltzmann machines, in: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. JMLR Workshop and Conference Proceedings, 2010, pp. 693-700.
[9] Kingma, D. P.; Welling, M., An introduction to variational autoencoders, Found. Trends Mach. Learn., 12, 4, 307-392 (2019) · Zbl 1431.68002
[10] Goodfellow, I.; Pouget-Abadie, J.; Mirza, M., Generative adversarial networks, Commun. ACM, 63, 11, 139-144 (2020)
[11] P.W. Shor, Algorithms for quantum computation: Discrete logarithms and factoring, in: 35th Annual Symposium on Foundations of Computer Science, Santa Fe, America, 1994, pp. 124-134.
[12] Shor, P. W., Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM Rev., 41, 2, 303-332 (1999) · Zbl 1005.11507
[13] L.K. Grover, A fast quantum mechanical algorithm for database search, in: 28th Annual ACM Symposium on Theory of Computing, New York, America, 1996, pp. 212-219. · Zbl 0922.68044
[14] Xiao, J.; Yan, Y. P.; Zhang, J.; Tang, Y., A quantum-inspired genetic algorithm for k-means clustering, Expert Syst. Appl., 37, 7, 4966-4973 (2010)
[15] Rebentrost, P.; Mohseni, M.; Lloyd, S., Quantum support vector machine for big data classification, Phys. Rev. Lett., 113, Article 130503 pp. (2014)
[16] Zhou, N. R.; Liu, X. X.; Chen, Y. L., Quantum K-nearest-neighbor image classification algorithm based on K-L transform, Internat. J. Theoret. Phys., 60, 3, 1209-1224 (2021) · Zbl 1522.68712
[17] Lloyd, S.; Mohseni, M.; Rebentrost, P., Quantum principal component analysis, Nat. Phys., 10, 9, 631-633 (2014)
[18] Zhou, N. R.; Xia, S. H.; Ma, Y.; Zhang, Y., Quantum particle swarm optimization algorithm with the truncated mean stabilization strategy, Quantum Inf. Process., 21, 2, 42 (2022) · Zbl 1508.81573
[19] Wu, C. Y.; Huang, F.; Dai, J. Y.; Zhou, N. R., Quantum SUSAN edge detection based on double chains quantum genetic algorithm, Physica A, 605, Article 128017 pp. (2022) · Zbl 07592472
[20] Du, Y.; Hsieh, M. H.; Liu, T., Quantum-inspired algorithm for general minimum conical hull problems, Phys. Rev. Res., 2, 3, Article 033199 pp. (2020)
[21] Preskill, J., Quantum computing in the NISQ era and beyond, Quantum, 2, 79 (2018)
[22] Du, Y.; Tu, Z.; Wu, B., Power of quantum generative learning (2022), arXiv preprint arXiv:2205.04730
[23] Niu, M. Y.; Zlokapa, A.; Broughton, M., Entangling quantum generative adversarial networks, Phys. Rev. Lett., 128, 22, Article 220505 pp. (2022)
[24] Huang, K.; Wang, Z. A.; Song, C., Quantum generative adversarial networks with multiple superconducting qubits, NPJ Quantum Inf., 7, 1, 165 (2021)
[25] McClean, J. R.; Romero, J.; Babbush, R., The theory of variational hybrid quantum-classical algorithms, New J. Phys., 18, 2, Article 023023 pp. (2016) · Zbl 1456.81149
[26] Benedetti, M.; Lloyd, E.; Sack, S., Parameterized quantum circuits as machine learning models, Quantum Sci. Technol., 4, 4, Article 043001 pp. (2019)
[27] Romero, J.; Aspuru-Guzik, A., Variational quantum generators: Generative adversarial quantum machine learning for continuous distributions, Adv. Quantum Technol., 4, 1, Article 2000003 pp. (2021)
[28] Huang, Y.; Lei, H.; Li, X., Quantum maximum mean discrepancy GAN, Neurocomputing, 454, 88-100 (2021)
[29] Liu, J. G.; Wang, L., Differentiable learning of quantum circuit Born machines, Phys. Rev. A, 98, 6, Article 062324 pp. (2018)
[30] Du, Y.; Hsieh, M. H.; Liu, T., Expressive power of parametrized quantum circuits, Phys. Rev. Res., 2, 3, Article 033125 pp. (2020)
[31] Situ, H. Z.; He, Z. M.; Wang, Y., Quantum generative adversarial network for generating discrete distribution, Inform. Sci., 538, 193-208 (2020) · Zbl 1474.68272
[32] Benedetti, M.; Garcia-Pintos, D.; Perdomo, O., A generative modeling approach for benchmarking and training shallow quantum circuits, NPJ Quantum Inf., 5, 45 (2019)
[33] Han, Z. Y.; Wang, J.; Fan, H., Unsupervised generative modeling using matrix product states, Phys. Rev. X, 8, 3, Article 031012 pp. (2018)
[34] Gong, L. H.; Xiang, L. Z.; Liu, S. H.; Zhou, NR., Born machine model based on matrix product state quantum circuit, Physica A, 593, Article 126907 pp. (2022) · Zbl 07486061
[35] Zhou, N. R.; Zhang, T. F.; Xie, X. W.; Wu, J. Y., Hybrid quantum-classical generative adversarial networks for image generation via learning discrete distribution, Signal Process.-Image Commun., 110, Article 116891 pp. (2023)
[36] Rudolph, M. S.; Toussaint, N. B.; Katabarwa, A., Generation of high-resolution handwritten digits with an ion-trap quantum computer, Phys. Rev. X, 12, 3, Article 031010 pp. (2022)
[37] Tsang, S. L.; West, M. T.; Erfani, S. M., Hybrid quantum-classical generative adversarial network for high resolution image generation (2022), arXiv preprint arXiv:2212.11614
[38] Tian, J.; Sun, X.; Du, Y., Recent advances for quantum neural networks in generative learning (2022), arXiv preprint arXiv:2206.03066
[39] He, Z. M.; Li, L. Z.; Zheng, S. G., A conditional generative model based on quantum circuit and classical optimization, Internat. J. Theoret. Phys., 58, 4, 1138-1149 (2019) · Zbl 1422.81076
[40] Liu, W. J.; Zhang, Y.; Deng, Z. L., A hybrid quantum-classical conditional generative adversarial network algorithm for human-centered paradigm in cloud, EURASIP J. Wireless Commun. Networking, 2021, 1, 37 (2021)
[41] Richards, F. S.G., A method of maximum-likelihood estimation, J. R. Stat. Soc. Ser. B Stat. Methodol., 23, 2, 469-475 (1961) · Zbl 0104.13003
[42] Gardner, M. W.; Dorling, S. R., Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences, Atmos. Environ., 32, 14-15, 2627-2636 (1998)
[43] Hershey, J. R.; Olsen, P. A., Approximating the Kullback Leibler divergence between Gaussian mixture models, (2007 IEEE International Conference on Acoustics, Speech and Signal Processing-ICASSP’07, Vol. 4 (2007), IEEE), IV-317-IV-320
[44] Borgwardt, K. M.; Gretton, A.; Rasch, M. J., Integrating structured biological data by kernel maximum mean discrepancy, Bioinformatics, 22, 14, e49-e57 (2006)
[45] Sim, S.; Johnson, P. D.; Aspuru-Guzik, A., Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms, Adv. Quantum Technol., 2, 12, Article 1900070 pp. (2019)
[46] Zhu, D.; Linke, N. M.; Benedetti, M., Training of quantum circuits on a hybrid quantum computer, Sci. Adv., 5, 10, Article eaaw9918 pp. (2019)
[47] Marrero, C. O.; Kieferová, M.; Wiebe, N., Entanglement-induced barren plateaus, PRX Quantum, 2, 4, Article 040316 pp. (2021)
[48] Bergholm, V.; Izaac, J.; Schuld, M., Pennylane: Automatic differentiation of hybrid quantum-classical computations (2018), arXiv:1811.04968
[49] Lahitani, A. R.; Permanasari, A. E.; Setiawan, N. A., Cosine similarity to determine similarity measure: Study case in online essay assessment, (2016 4th International Conference on Cyber and IT Service Management (2016), IEEE), 1-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.