×

Improving the performance of quantum approximate optimization for preparing non-trivial quantum states without translational symmetry. (English) Zbl 1510.81051

Summary: The variational preparation of complex quantum states using the quantum approximate optimization algorithm (QAOA) is of fundamental interest, and becomes a promising application of quantum computers. Here, we systematically study the performance of QAOA for preparing ground states of target Hamiltonians near the critical points of their quantum phase transitions, and generating Greenberger-Horne-Zeilinger (GHZ) states. We reveal that the performance of QAOA is related to the translational invariance of the target Hamiltonian: without the translational symmetry, for instance due to the open boundary condition (OBC) or randomness in the system, the QAOA becomes less efficient. We then propose a generalized QAOA assisted by the parameterized resource Hamiltonian (PRH-QAOA), to achieve a better performance. In addition, based on the PRH-QAOA, we design a low-depth quantum circuit beyond one-dimensional geometry, to generate GHZ states with perfect fidelity. The experimental realization of the proposed scheme for generating GHZ states on Rydberg-dressed atoms is discussed. Our work paves the way for performing QAOA on programmable quantum processors without translational symmetry, especially for recently developed two-dimensional quantum processors with OBC.

MSC:

81P68 Quantum computation
81P16 Quantum state spaces, operational and probabilistic concepts

References:

[1] Preskill, J., Quantum computing in the NISQ era and beyond, Quantum, 2, 79 (2018) · doi:10.22331/q-2018-08-06-79
[2] Alexeev, Y., Quantum computer systems for scientific discovery, PRX Quantum, 2 (2021) · doi:10.1103/PRXQuantum.2.017001
[3] Cerezo, M., Variational quantum algorithms, Nat. Rev. Phys., 3, 625-44 (2021) · doi:10.1038/s42254-021-00348-9
[4] Kokail, C., Self-verifying variational quantum simulation of lattice models, Nature, 569, 355-60 (2019) · doi:10.1038/s41586-019-1177-4
[5] Li, Y.; Benjamin, S. C., Efficient variational quantum simulator incorporating active error minimization, Phys. Rev. X, 7 (2017) · doi:10.1103/PhysRevX.7.021050
[6] Carleo, G.; Troyer, M., Solving the quantum many-body problem with artificial neural networks, Science, 355, 602-6 (2017) · Zbl 1404.81313 · doi:10.1126/science.aag2302
[7] Bolens, A.; Heyl, M., Reinforcement learning for digital quantum simulation, Phys. Rev. Lett., 127 (2021) · doi:10.1103/PhysRevLett.127.110502
[8] Bharti, K., Noisy intermediate-scale quantum algorithms, Rev. Mod. Phys., 94 (2022) · doi:10.1103/RevModPhys.94.015004
[9] Kandala, A.; Mezzacapo, A.; Temme, K.; Takita, M.; Brink, M.; Chow, J. M.; Gambetta, J. M., Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets, Nature, 549, 242-6 (2017) · doi:10.1038/nature23879
[10] Wecker, D.; Hastings, M. B.; Troyer, M., Progress towards practical quantum variational algorithms, Phys. Rev. A, 92 (2015) · doi:10.1103/PhysRevA.92.042303
[11] Peruzzo, A.; McClean, J.; Shadbolt, P.; Yung, M. H.; Zhou, X. Q.; Love, P. J.; Aspuru-Guzik, A.; O’Brien, J. L., A variational eigenvalue solver on a photonic quantum processor, Nat. Commun., 5, 4213 (2014) · doi:10.1038/ncomms5213
[12] McClean, J. R.; Romero, J.; Babbush, R.; Aspuru-Guzik, A., The theory of variational hybrid quantum-classical algorithms, New J. Phys., 18 (2016) · Zbl 1456.81149 · doi:10.1088/1367-2630/18/2/023023
[13] Moll, N., Quantum optimization using variational algorithms on near-term quantum devices, Quantum Sci. Technol., 3 (2018) · doi:10.1088/2058-9565/aab822
[14] Bravo-Prieto, C.; Lumbreras-Zarapico, J.; Tagliacozzo, L.; Latorre, J. I., Scaling of variational quantum circuit depth for condensed matter systems, Quantum, 4, 272 (2020) · doi:10.22331/q-2020-05-28-272
[15] Farhi, E.; Goldstone, J.; Gutmann, S. A., Quantum approximate optimization algorithm (2014)
[16] Zhou, L.; Wang, S. T.; Choi, S.; Pichler, H.; Lukin, M. D., Quantum approximate optimization algorithm: performance, mechanism and implementation on near-term devices, Phys. Rev. X, 10 (2020) · doi:10.1103/PhysRevX.10.021067
[17] Crooks, G. E., Performance of the quantum approximate optimization algorithm on the maximum cut problem (2018)
[18] Harrigan, M., Quantum approximate optimization of non-planar graph problems on a planar superconducting processor, Nat. Phys., 17, 332-6 (2021) · doi:10.1038/s41567-020-01105-y
[19] Abrams, D. M.; Didier, N.; Johnson, B. R.; da Silva, M. P.; Ryan, C. A., Implementation of xy entangling gates with a single calibrated pulse, Nat. Electron., 3, 744-50 (2020) · doi:10.1038/s41928-020-00498-1
[20] Akshay, V.; Philathong, H.; Morales, M. E S.; Biamonte, J. D., Reachability deficits in quantum approximate optimization, Phys. Rev. Lett., 124 (2020) · doi:10.1103/PhysRevLett.124.090504
[21] Basso, J.; Farhi, E.; Marwaha, K.; Villalonga, B.; Zhou, L., The quantum approximate optimization algorithm at high depth for maxcut on Large-Girth regular graphs and the Sherrington-Kirkpatrick model (2021)
[22] Weidenfeller, J.; Valor, L. C.; Gacon, J.; Tornow, C.; Bello, L.; Woerner, S.; Egger, D. J., Scaling of the quantum approximate optimization algorithm on superconducting qubit based hardware (2022)
[23] Ebadi, S., Quantum optimization of maximum independent set using Rydberg atom arrays (2022)
[24] Ho, W. W.; Hsieh, T. H., Efficient variational simulation of non-trivial quantum states, SciPost Phys., 6, 29 (2019) · doi:10.21468/SciPostPhys.6.3.029
[25] Wiersema, R.; Zhou, C.; de Sereville, Y.; Carrasquilla, J. F.; Kim, Y. B.; Yuen, H., Exploring entanglement and optimization within the Hamiltonian variational ansatz, PRX Quantum, 1 (2020) · doi:10.1103/PRXQuantum.1.020319
[26] Matos, G.; Johri, S.; Papić, Z., Quantifying the efficiency of state preparation via quantum variational eigensolvers, PRX Quantum, 2 (2021) · doi:10.1103/PRXQuantum.2.010309
[27] Wauters, M. M.; Bigan, M. G.; Santoro, G. E., Polynomial scaling of QAOA for ground-state preparation of the fully-connected p-spin ferromagnet (2020)
[28] Vogt, N.; Zanker, S.; Reiner, J. M.; Eckl, T.; Marusczyk, A.; Marthaler, M., Preparing symmetry broken ground states with variational quantum algorithms (2020)
[29] Cade, C.; Mineh, L.; Montanaro, A.; Stanisic, S., Strategies for solving the Fermi-Hubbard model on near-term quantum computers, Phys. Rev. B, 102 (2020) · doi:10.1103/PhysRevB.102.235122
[30] Yao, J.; Lin, L.; Bukov, M., Reinforcement learning for many-body ground-state preparation inspired by counterdiabatic driving, Phys. Rev. X, 11 (2021) · doi:10.1103/PhysRevX.11.031070
[31] Pagano, G., Quantum approximate optimization of the long-range Ising model with a trapped-ion quantum simulator, Proc. Natl Acad. Sci., 117, 25396-401 (2020) · Zbl 1485.82005 · doi:10.1073/pnas.2006373117
[32] Zhu, D.; Johri, S.; Linke, N. M.; Landsman, K. A.; Huerta Alderete, C.; Nguyen, N. H.; Matsuura, A. Y.; Hsieh, T. H.; Monroe, C., Generation of thermofield double states and critical ground states with a quantum computer, Proc. Natl Acad. Sci., 117, 25402-6 (2020) · Zbl 1485.81023 · doi:10.1073/pnas.2006337117
[33] Farhi, E.; Harrow, A. W., Quantum supremacy through the quantum approximate optimization algorithm (2016)
[34] Dalzell, A. M.; Harrow, A. W.; Koh, D. E.; La Placa, R. L., How many qubits are needed for quantum computational supremacy?, Quantum, 4, 264 (2020) · doi:10.22331/q-2020-05-11-264
[35] Ho, W. W.; Jonay, C.; Hsieh, T. H., Ultrafast variational simulation of nontrivial quantum states with long-range interactions, Phys. Rev. A, 99 (2019) · doi:10.1103/PhysRevA.99.052332
[36] McClean, J. R.; Boixo, S.; Smelyanskiy, V. N.; Neven, H., Barren plateaus in quantum neural network training landscapes, Nat. Commun., 9, 4812 (2018) · doi:10.1038/s41467-018-07090-4
[37] Santra, G. C.; Jendrzejewski, F.; Hauke, P.; Egger, D. J., Squeezing and quantum approximate optimization (2022)
[38] Zhang, Y.; Lu, K.; Gao, Y.; Wang, M., NEQR: a novel enhanced quantum representation of digital images, Quantum Inf. Process, 12, 2833-60 (2013) · Zbl 1283.81042 · doi:10.1007/s11128-013-0567-z
[39] Chetia, R.; Boruah, S. M B.; Sahu, P. P., Quantum image edge detection using improved sobel mask based on NEQR, Quantum Inf. Process, 20, 21 (2021) · Zbl 1509.81153 · doi:10.1007/s11128-020-02944-7
[40] Sachdev, S., Quantum Phase Transitions (2000), Cambridge: Cambridge University, Cambridge · Zbl 1008.82016
[41] Jordan, J.; Orús, R.; Vidal, G.; Verstraete, F.; Cirac, J. I., Classical simulation of infinite-size quantum lattice systems in two spatial dimensions, Phys. Rev. Lett., 101 (2008) · doi:10.1103/PhysRevLett.101.250602
[42] Blöte, H. W J.; Deng, Y., Cluster Monte Carlo simulation of the transverse Ising model, Phys. Rev. E, 66 (2002) · doi:10.1103/PhysRevE.66.066110
[43] Pfeuty, P., The one-dimensional Ising model with a transverse field, Ann. Phys., 57, 79-90 (1970) · doi:10.1016/0003-4916(70)90270-8
[44] Wu, Y., Strong quantum computational advantage using a superconducting quantum processor, Phys. Rev. Lett., 127 (2021) · doi:10.1103/PhysRevLett.127.180501
[45] Arute, F., Quantum supremacy using a programmable superconducting processor, Nature, 574, 505-10 (2019) · doi:10.1038/s41586-019-1666-5
[46] Braumüller, J., Probing quantum information propagation with out-of-time-ordered correlators, Nat. Phys., 18, 172-8 (2022) · doi:10.1038/s41567-021-01430-w
[47] Labuhn, H.; Barredo, D.; Ravets, S.; de Léséleuc, S.; Macrì, T.; Lahaye, T.; Browaeys, A., Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models, Nature, 534, 667-70 (2016) · doi:10.1038/nature18274
[48] Lienhard, V.; de Léséleuc, S.; Barredo, D.; Lahaye, T.; Browaeys, A.; Schuler, M.; Henry, L. P.; Läuchli, A. M., Observing the space- and time-dependent growth of correlations in dynamically tuned synthetic Ising models with antiferromagnetic interactions, Phys. Rev. X, 8 (2018) · doi:10.1103/PhysRevX.8.021070
[49] Guardado-Sanchez, E.; Brown, P. T.; Mitra, D.; Devakul, T.; Huse, D. A.; Schauß, P.; Bakr, W. S., Probing the quench dynamics of antiferromagnetic correlations in a 2D quantum Ising spin system, Phys. Rev. X, 8 (2018) · doi:10.1103/PhysRevX.8.021069
[50] Ebadi, S., Quantum phases of matter on a 256-atom programmable quantum simulator, Nature, 595, 227-32 (2021) · doi:10.1038/s41586-021-03582-4
[51] Franchini, F., An Introduction to Integrable Techniques for One-Dimensional Quantum Systems (2017), Cham: Springer, Cham · Zbl 1376.82001
[52] Zhao, Z.; Chen, Y. A.; Zhang, A. N.; Yang, T.; Briegel, H. J.; Pan, J. W., Experimental demonstration of five-photon entanglement and open-destination teleportation, Nature, 530, 54-58 (2004) · doi:10.1038/nature02643
[53] Giovannetti, V.; Lloyd, S.; Maccone, L., Advances in quantum metrology, Nat. Photon., 5, 222-9 (2011) · doi:10.1038/nphoton.2011.35
[54] Knill, E., Quantum computing with realistically noisy devices, Nature, 434, 39-44 (2005) · doi:10.1038/nature03350
[55] Song, C., Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits, Science, 365, 574-7 (2019) · doi:10.1126/science.aay0600
[56] Song, C., 10-qubit entanglement and parallel logic operations with a superconducting circuit, Phys. Rev. Lett., 119 (2017) · doi:10.1103/PhysRevLett.119.180511
[57] Barends, R., Digitized adiabatic quantum computing with a superconducting circuit, Nature, 534, 222-6 (2016) · doi:10.1038/nature17658
[58] Wei, K. X.; Lauer, I.; Srinivasan, S.; Sundaresan, N.; McClure, D. T.; Toyli, D.; McKay, D. C.; Gambetta, J. M.; Sheldon, S., Verifying multipartite entangled Greenberger-Horne-Zeilinger states via multiple quantum coherences, Phys. Rev. A, 101 (2020) · doi:10.1103/PhysRevA.101.032343
[59] Wu, Q. C.; Zhou, Y. H.; Ye, B. L.; Liu, T.; Zhao, J. L.; Chen, D. X.; Yang, C. P., Generation of an enhanced multi-mode optomechanical-like quantum system and its application in creating hybrid entangled states, Ann. Phys., Lpz., 534 (2022) · Zbl 07769813 · doi:10.1002/andp.202100393
[60] Sahu, P. P., Thermooptic two-mode interference device for reconfigurable quantum optic circuits, Quantum Inf. Process, 17, 150 (2018) · Zbl 1448.81186 · doi:10.1007/s11128-018-1919-5
[61] Pan, J. W.; Chen, Z. B.; Lu, C. Y.; Weinfurter, H.; Zeilinger, A.; Żukowski, M., Multiphoton entanglement and interferometry, Rev. Mod. Phys., 84, 777-838 (2012) · doi:10.1103/RevModPhys.84.777
[62] Monz, T., 14-qubit entanglement: creation and coherence, Phys. Rev. Lett., 106 (2011) · doi:10.1103/PhysRevLett.106.130506
[63] Pogorelov, I., Compact ion-trap quantum computing demonstrator, PRX Quantum, 2 (2021) · doi:10.1103/PRXQuantum.2.020343
[64] Omran, A., Generation and manipulation of Schrödinger cat states in Rydberg atom arrays, Science, 365, 570-4 (2019) · doi:10.1126/science.aax9743
[65] Graham, T. M., Multi-qubit entanglement and algorithms on a neutral-atom quantum computer, Nature, 604, 457-62 (2022) · doi:10.1038/s41586-022-04603-6
[66] Cui, J.; van Bijnen, R.; Pohl, T.; Montangero, S.; Calarco, T., Optimal control of Rydberg lattice gases, Quantum Sci. Technol., 2 (2017) · doi:10.1088/2058-9565/aa7daf
[67] Yao, X. C., Observation of eight-photon entanglement, Nat. Photon., 6, 225-8 (2012) · doi:10.1038/nphoton.2011.354
[68] Neeley, M., Generation of three-qubit entangled states using superconducting phase qubits, Nature, 467, 570-3 (2010) · doi:10.1038/nature09418
[69] Borish, V.; Marković, O.; Hines, J. A.; Rajagopal, S. V.; Schleier-Smith, M., Transverse-field Ising dynamics in a Rydberg-dressed atomic gas, Phys. Rev. Lett., 124 (2020) · doi:10.1103/PhysRevLett.124.063601
[70] Zeiher, J.; Choi, J. Y.; Rubio-Abadal, A.; Pohl, T.; van Bijnen, R.; Bloch, I.; Gross, C., Coherent many-body spin dynamics in a long-range interacting Ising chain, Phys. Rev. X, 7 (2017) · doi:10.1103/PhysRevX.7.041063
[71] Jau, Y. Y.; Hankin, A. M.; Keating, T.; Deutsch, I. H.; Biedermann, G. W., Entangling atomic spins with a Rydberg-dressed spin-flip blockade, Nat. Phys., 12, 71-74 (2016) · doi:10.1038/nphys3487
[72] Sheng, C., Defect-free arbitrary-geometry assembly of mixed-species atom arrays, Phys. Rev. Lett., 128 (2022) · doi:10.1103/PhysRevLett.128.083202
[73] Singh, K.; Anand, S.; Pocklington, A.; Kemp, J. T.; Dual-element, B. H., two-dimensional atom array with continuous-mode operation, Phys. Rev. X, 12 (2022) · doi:10.1103/PhysRevX.12.011040
[74] Sherrington, D.; Kirkpatrick, S., Solvable model of a spin-glass, Phys. Rev. Lett., 35, 1792-6 (1975) · doi:10.1103/PhysRevLett.35.1792
[75] Schindler, P. M.; Guaita, T.; Shi, T.; Demler, E.; Cirac, J. I., Variational ansatz for the ground state of the quantum Sherrington-Kirkpatrick model, Phys. Rev. Lett., 129 (2022) · doi:10.1103/PhysRevLett.129.220401
[76] Das, A.; Chakrabarti, B. K., Reaching the ground state of a quantum spin glass using a zero-temperature quantum Monte Carlo method, Phys. Rev. E, 78 (2008) · doi:10.1103/PhysRevE.78.061121
[77] Mukherjee, S.; Rajak, A.; Chakrabarti, B. K., Classical-to-quantum crossover in the critical behavior of the transverse-field Sherrington-Kirkpatrick spin glass model, Phys. Rev. E, 92 (2015) · doi:10.1103/PhysRevE.92.042107
[78] Wu, Q. C.; Zhou, Y. H.; Ye, B. L.; Liu, T.; Yang, C. P., Nonadiabatic quantum state engineering by time-dependent decoherence-free subspaces in open quantum systems, New J. Phys., 23 (2021) · doi:10.1088/1367-2630/ac309d
[79] Guéry-Odelin, D.; Ruschhaupt, A.; Kiely, A.; Torrontegui, E.; Martínez-Garaot, S.; Muga, J. G., Shortcuts to adiabaticity: concepts, methods and applications, Rev. Mod. Phys., 91 (2019) · doi:10.1103/RevModPhys.91.045001
[80] Campbell, S.; De Chiara, G.; Paternostro, M.; Palma, G. M.; Fazio, R., Shortcut to adiabaticity in the Lipkin-Meshkov-Glick model, Phys. Rev. Lett., 114 (2015) · doi:10.1103/PhysRevLett.114.177206
[81] Yan, Z., Strongly correlated quantum walks with a 12-qubit superconducting processor, Science, 364, 753-6 (2019) · doi:10.1126/science.aaw1611
[82] Roushan, P., Spectroscopic signatures of localization with interacting photons in superconducting qubits, Science, 358, 1175-9 (2017) · doi:10.1126/science.aao1401
[83] Chen, F., Observation of strong and weak thermalization in a superconducting quantum processor, Phys. Rev. Lett., 127 (2021) · doi:10.1103/PhysRevLett.127.020602
[84] Zhu, Q., Observation of thermalization and information scrambling in a superconducting quantum processor, Phys. Rev. Lett., 128 (2022) · doi:10.1103/PhysRevLett.128.160502
[85] Monroe, C., Programmable quantum simulations of spin systems with trapped ions, Rev. Mod. Phys., 93 (2021) · doi:10.1103/RevModPhys.93.025001
[86] Sack, S. H.; Serbyn, M., Quantum annealing initialization of the quantum approximate optimization algorithm, Quantum, 5, 491 (2021) · doi:10.22331/q-2021-07-01-491
[87] Brady, L. T.; Baldwin, C. L.; Bapat, A.; Kharkov, Y.; Gorshkov, A. V., Optimal protocols in quantum annealing and quantum approximate optimization algorithm problems, Phys. Rev. Lett., 126 (2021) · doi:10.1103/PhysRevLett.126.070505
[88] Yu, Y.; Cao, C.; Dewey, C.; Wang, X. B.; Shannon, N.; Joynt, R., Quantum approximate optimization algorithm with adaptive bias fields, Phys. Rev. Res., 4 (2022) · doi:10.1103/PhysRevResearch.4.023249
[89] Zhu, L.; Tang, H. L.; Barron, G. S.; Calderon-Vargas, F. A.; Mayhall, N. J.; Barnes, E.; Economou, S. E., Adaptive quantum approximate optimization algorithm for solving combinatorial problems on a quantum computer, Phys. Rev. Res., 4 (2022) · doi:10.1103/PhysRevResearch.4.033029
[90] Herrman, R.; Lotshaw, P. C.; Ostrowski, J.; Humble, T. S.; Siopsis, G., Multi-angle quantum approximate optimization algorithm, Sci. Rep., 12, 6781 (2022) · doi:10.1038/s41598-022-10555-8
[91] Chandarana, P.; Hegade, N. N.; Paul, K.; Albarrán-Arriagada, F.; Solano, E.; del Campo, A.; Chen, X., Digitized-counterdiabatic quantum approximate optimization algorithm, Phys. Rev. Res., 4 (2022) · doi:10.1103/PhysRevResearch.4.013141
[92] Wurtz, J.; Love, P. J., Counterdiabaticity and the quantum approximate optimization algorithm, Quantum, 6, 635 (2022) · doi:10.22331/q-2022-01-27-635
[93] Kattemölle, J.; van Wezel, J., Variational quantum eigensolver for the heisenberg antiferromagnet on the kagome lattice (2021)
[94] Bosse, J. L., Montanaro A Probing ground-state properties of the kagome antiferromagnetic Heisenberg model using the variational quantum eigensolver, Phys. Rev. B, 105 (2022) · doi:10.1103/PhysRevB.105.094409
[95] Uvarov, A.; Biamonte, J. D.; Yudin, D., Variational quantum eigensolver for frustrated quantum systems, Phys. Rev. B, 102 (2020) · doi:10.1103/PhysRevB.102.075104
[96] de Léséleuc, S.; Barredo, D.; Lienhard, V.; Browaeys, A.; Lahaye, T., Analysis of imperfections in the coherent optical excitation of single atoms to Rydberg states, Phys. Rev. A, 97 (2018) · doi:10.1103/PhysRevA.97.053803
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.