×

Effects of cavity birefringence in polarisation-encoded quantum networks. (English) Zbl 1510.81027

Summary: The generation of entanglement between distant atoms via single photons is the basis for networked quantum computing, a promising route to large-scale trapped-ion and trapped-atom processors. Locating the emitter within an optical cavity provides an efficient matter-light interface, but mirror-induced birefringence within the cavity introduces time-dependence to the polarisation of the photons produced. We show that such ‘polarisation oscillation’ effects can lead to severe loss of fidelity in the context of two-photon, polarisation encoded measurement-based remote entanglement schemes. It is always preferable to suppress these errors at source by minimising mirror ellipticity, but we propose two remedies for systems where this cannot be achieved. We conclude that even modest cavity birefringence can be detrimental to remote entanglement performance, to an extent that may limit the suitability of polarisation-encoded schemes for large-scale quantum networks.

MSC:

81P40 Quantum coherence, entanglement, quantum correlations
81P42 Entanglement measures, concurrencies, separability criteria
81V80 Quantum optics

References:

[1] Young, T., Phil. Trans. R. Soc., 94, 1 (1804) · doi:10.1098/rstl.1804.0001
[2] Michelson, A. A.; Morley, E. W., Am. J. Sci., s3-34, 333 (1887) · doi:10.2475/ajs.s3-34.203.333
[3] Shih, Y. H.; Alley, C. O., Phys. Rev. Lett., 61, 2921 (1988) · doi:10.1103/PhysRevLett.61.2921
[4] Kimble, H. J., Nature, 453, 1023 (2008) · doi:10.1038/nature07127
[5] Reiserer, A.; Rempe, G., Rev. Mod. Phys., 87, 1379 (2015) · doi:10.1103/RevModPhys.87.1379
[6] Cirac, J. I.; Zoller, P.; Kimble, H. J.; Mabuchi, H., Phys. Rev. Lett., 78, 3221 (1997) · doi:10.1103/PhysRevLett.78.3221
[7] Ritter, S.; Nölleke, C.; Hahn, C.; Reiserer, A.; Neuzner, A.; Uphoff, M.; Mücke, M.; Figueroa, E.; Bochmann, J.; Rempe, G., Nature, 484, 195 (2012) · doi:10.1038/nature11023
[8] Cabrillo, C.; Cirac, J. I.; García-Fernández, P.; Zoller, P., Phys. Rev. A, 59, 1025 (1999) · doi:10.1103/PhysRevA.59.1025
[9] Feng, X-L; Zhang, Z-M; Li, X-D; Gong, S-Q; Xu, Z-Z, Phys. Rev. Lett., 90 (2003) · doi:10.1103/PhysRevLett.90.217902
[10] Duan, L-M; Kimble, H. J., Phys. Rev. Lett., 90 (2003) · doi:10.1103/PhysRevLett.90.253601
[11] Simon, C.; Irvine, W. T M., Phys. Rev. Lett., 91 (2003) · doi:10.1103/PhysRevLett.91.110405
[12] Campbell, E. T.; Benjamin, S. C., Phys. Rev. Lett., 101 (2008) · doi:10.1103/PhysRevLett.101.130502
[13] Moehring, D.; Maunz, P.; Olmschenk, S.; Younge, K.; Matsukevich, D.; Duan, L-M; Monroe, C., Nature, 449, 68 (2007) · doi:10.1038/nature06118
[14] Hofmann, J.; Krug, M.; Ortegel, N.; Gérard, L.; Weber, M.; Rosenfeld, W.; Weinfurter, H., Science, 337, 72 (2012) · doi:10.1126/science.1221856
[15] Hensen, B., Nature, 526, 682 (2015) · doi:10.1038/nature15759
[16] Riedinger, R.; Wallucks, A.; Marinković, I.; Löschnauer, C.; Aspelmeyer, M.; Hong, S.; Gröblacher, S., Nature, 556, 473 (2018) · doi:10.1038/s41586-018-0036-z
[17] Vasilev, G. S.; Ljunggren, D.; Kuhn, A., New J. Phys., 12 (2010) · doi:10.1088/1367-2630/12/6/063024
[18] Purcell, E. M., Phys. Rev., 69, 681 (1946) · doi:10.1103/PhysRev.69.674.2
[19] Rohde, P. P.; Ralph, T. C.; Nielsen, M. A., Phys. Rev. A, 72 (2005) · doi:10.1103/PhysRevA.72.052332
[20] Goto, H.; Mizukami, S.; Tokunaga, Y.; Aoki, T., Phys. Rev. A, 99 (2019) · doi:10.1103/PhysRevA.99.053843
[21] Hunger, D.; Steinmetz, T.; Colombe, Y.; Deutsch, C.; Hänsch, T. W.; Reichel, J., New J. Phys., 12 (2010) · doi:10.1088/1367-2630/12/6/065038
[22] Nisbet-Jones, P. B R.; Dilley, J.; Ljunggren, D.; Kuhn, A., New J. Phys., 13 (2011) · doi:10.1088/1367-2630/13/10/103036
[23] Brandstätter, B., Rev. Sci. Instrum., 84 (2013) · doi:10.1063/1.4838696
[24] Steiner, M.; Meyer, H. M.; Deutsch, C.; Reichel, J.; Köhl, M., Phys. Rev. Lett., 110 (2013) · doi:10.1103/PhysRevLett.110.043003
[25] Gulati, G. K.; Takahashi, H.; Podoliak, N.; Horak, P.; Keller, M., Sci. Rep., 7, 5556 (2017) · doi:10.1038/s41598-017-05729-8
[26] Takahashi, H.; Kassa, E.; Christoforou, C.; Keller, M., Phys. Rev. Lett., 124 (2020) · doi:10.1103/PhysRevLett.124.013602
[27] Brekenfeld, M.; Niemietz, D.; Christesen, J. D.; Rempe, G., Nat. Phys., 16, 647-51 (2020) · doi:10.1038/s41567-020-0855-3
[28] Jacob, D.; Oger, M.; Vallet, M.; Bretenaker, F.; Floch, A. L., Opt. Lett., 20, 671 (1995) · doi:10.1364/OL.20.000671
[29] Moriwaki, S.; Sakaida, H.; Yuzawa, T.; Mio, N., Appl. Phys. B, 65, 347 (1997) · doi:10.1007/s003400050282
[30] Takahashi, H.; Morphew, J.; Oručević, F.; Noguchi, A.; Kassa, E.; Keller, M., Opt. Express, 22 (2014) · doi:10.1364/OE.22.031317
[31] Ott, K.; Garcia, S.; Kohlhaas, R.; Schüppert, K.; Rosenbusch, P.; Long, R.; Reichel, J., Opt. Express, 24, 9839 (2016) · doi:10.1364/OE.24.009839
[32] Barrett, T. D.; Barter, O.; Stuart, D.; Yuen, B.; Kuhn, A., Phys. Rev. Lett., 122 (2019) · doi:10.1103/PhysRevLett.122.083602
[33] Barrett, T. D.; Doherty, T. H.; Kuhn, A., New J. Phys., 22 (2020) · doi:10.1088/1367-2630/ab8ab0
[34] For simplicity, we consider the naturally desired balanced entangled state (which maximises entanglement generation rates) without loss of generality on the effects of birefringence. The formulation can simply be extended to an unbalanced entangled state.
[35] Hennrich, M.; Legero, T.; Kuhn, A.; Rempe, G., Phys. Rev. Lett., 85, 4872 (2000) · doi:10.1103/PhysRevLett.85.4872
[36] Loudon, R., The Quantum Theory of Light (Oxford Science Publications) (2000), Oxford: Oxford University Press, Oxford · Zbl 1009.81003
[37] Takahashi, Hin preparation
[39] Deutsch, D.; Ekert, A.; Jozsa, R.; Macchiavello, C.; Popescu, S.; Sanpera, A., Phys. Rev. Lett., 77, 2818 (1996) · doi:10.1103/PhysRevLett.77.2818
[40] Nigmatullin, R.; Ballance, C. J.; de Beaudrap, N.; Benjamin, S. C., New J. Phys., 18 (2016) · Zbl 1456.81128 · doi:10.1088/1367-2630/18/10/103028
[42] Niemietz, D.; Farrera, P.; Langenfeld, S.; Rempe, G., Nature, 591, 570 (2021) · doi:10.1038/s41586-021-03290-z
[43] Uphoff, M.; Brekenfeld, M.; Rempe, G.; Ritter, S., New J. Phys., 17 (2015) · doi:10.1088/1367-2630/17/1/013053
[44] Garcia, S.; Ferri, F.; Ott, K.; Reichel, J.; Long, R., Opt. Express, 26 (2018) · doi:10.1364/OE.26.022249
[45] Luo, L.; Hayes, D.; Manning, T.; Matsukevich, D.; Maunz, P.; Olmschenk, S.; Sterk, J.; Monroe, C., Fortschr. Phys., 57, 1133 (2009) · Zbl 1183.81026 · doi:10.1002/prop.200900093
[46] Maunz, P.; Olmschenk, S.; Hayes, D.; Matsukevich, D.; Duan, L-M; Monroe, C., Phys. Rev. Lett., 102 (2009) · doi:10.1103/PhysRevLett.102.250502
[47] Connell, S. C.; Scarabel, J.; Bridge, E. M.; Shimizu, K.; Blūms, V.; Ghadimi, M.; Lobino, M.; Streed, E. W., J. Phys. B: At. Mol. Opt. Phys., 54 (2021) · doi:10.1088/1361-6455/ac2984
[48] Walker, T.; Kashanian, S. V.; Ward, T.; Keller, M., Phys. Rev. A, 102 (2020) · doi:10.1103/PhysRevA.102.032616
[49] Gao, S2021Towards large scale quantum networksPhD ThesisUniversity of Oxford
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.