×

Homogenization theory of elliptic system with lower order terms for dimension two. (English) Zbl 1520.35005

Let \(\Omega\) be a bounded open subset of \({\mathbb{R}}^2\) of class \(C^{1,\eta}\) for some \(\eta\in]0,1[\). Let \(\lambda\in]0,+\infty[\), \(\epsilon\in]0,+\infty[\). Let \[ {\mathcal{L}}_\epsilon\equiv-{\operatorname{div}}\left[A(x/\epsilon)\nabla+V(x/\epsilon)\right] +B(x/\epsilon)\nabla+c(x/\epsilon)+\lambda I \] be a uniformly elliptic differential operator of order \(2\), with periodic coefficients \(A\), \(V\), \(B\), \(c\) with periodicity cell equal to \([0,1[^2\). Under suitable assumptions, the authors prove \(\epsilon\)-independent Sobolev and Hölder a priori estimates for the weak solution \(u_\epsilon\) of the Dirichlet problem \[ {\mathcal{L}}_\epsilon(u_\epsilon)={\operatorname{div}} (f)+F\quad\text{in}\ \Omega\,, \quad u_\epsilon=g\quad\text{on}\ \partial\Omega\,, \] for some data \(f\) and \(F\) in a Lebesgue space in \(\Omega\) and for some \(g\) that belongs to a Besov or to a Hölder/Schauder space on \(\partial\Omega\), respectively. The authors also prove an estimate on the Green function and an estimate of the rate of convergence of \(u_\epsilon\) to a limiting solution as \(\epsilon\) tends to \(0\). The paper under review extends to the \(2\)-dimensional case previous results of Q. Xu [J. Math. Anal. Appl. 438, No. 2, 1066–1107 (2016; Zbl 1337.35009)], who had considered the \(d\)-dimensional case with \(d\geq 3\).

MSC:

35B27 Homogenization in context of PDEs; PDEs in media with periodic structure
35B25 Singular perturbations in context of PDEs
35B65 Smoothness and regularity of solutions to PDEs
35J57 Boundary value problems for second-order elliptic systems

Citations:

Zbl 1337.35009

References:

[1] R. A. J. J. F. Adams Fournier, Sobolev Spaces (2003) · Zbl 1098.46001
[2] M. F. Avellaneda Lin, Compactness methods in the theory of homogenization, Commun. Pure Appl. Math., 40, 803-847 (1987) · Zbl 0632.35018 · doi:10.1002/cpa.3160400607
[3] M. F. Avellaneda Lin, Compactness methods in the theory of homogenization Ⅱ: Equations in non-divergence form, Commun. Pure Appl. Math., 42, 139-172 (1989) · Zbl 0645.35019 · doi:10.1002/cpa.3160420203
[4] D. P. Cioranescu Donato, An Introduction to Homogenization (1999) · Zbl 0939.35001
[5] S. H. S. Cho Dong Kim, On the Green’s matrices of strongly parabolic systems of second order, Indiana Uni. Math. J., 57, 1633-1677 (2008) · Zbl 1170.35005
[6] H. S. Dong Kim, Green’s matrices of second order elliptic systems with measurable coefficients in two dimensional domains, Trans. Amer. Math. Soc., 361, 3303-3323 (2009) · Zbl 1173.35050 · doi:10.1090/S0002-9947-09-04805-3
[7] H. S. Dong Kim, Green’s function for nondivergence elliptic operators in two dimensions, SIAM J. Math. Anal., 53, 4637-4656 (2021) · Zbl 1479.35257 · doi:10.1137/20M1323618
[8] J. Z. Geng Shen, Uniform regularity estimates in parabolic homogenization, Indiana Uni. Math. J., 64, 697-733 (2015) · Zbl 1325.35081 · doi:10.1512/iumj.2015.64.5503
[9] J. B. Geng Shi, Green’s matrices and boundary estimates in parabolic homogenization, J. Differ. Equ., 269, 3031-3066 (2020) · Zbl 1439.35038 · doi:10.1016/j.jde.2020.02.021
[10] M. Giaquinta and L. Martinazzi, An introduction to the regularity theory for elliptic systems, harmonic maps and minimal graphs, Edizioni della Normale, Pisa, 2005. · Zbl 1093.35001
[11] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin-New York, 1977. · Zbl 0361.35003
[12] C. E. F. Z. Kenig Lin Shen, Periodic homogenization of Green and Neumann functions, Commun. Pure Appl. Math., 67, 1219-1262 (2014) · Zbl 1300.35030 · doi:10.1002/cpa.21482
[13] C. E. F. Z. Kenig Lin Shen, Estimates of eigenvalues and eigenfunctions in periodic homogenization, J. Euro. Math. Soc., 15, 1901-1925 (2013) · Zbl 1292.35179 · doi:10.4171/JEMS/408
[14] Z. Shen, Boundary value problems in Morrey spaces for elliptic systems on Lipschitz domains, Amer. J. Math., 125, 1079-1115 (2003) · Zbl 1046.35029
[15] Z. Shen, Bounds of Riesz transforms on \(L^p\) spaces for second order elliptic operators, Ann. I. Fourier, 55, 173-197 (2005) · Zbl 1068.47058
[16] Z. Shen, Necessary and sufficient conditions for the solvability of the \(L^p\) Dirichlet problem on Lipschitz domains, Math. Ann., 336, 697-725 (2006) · Zbl 1194.35131 · doi:10.1007/s00208-006-0022-x
[17] Z. Shen, The \(L^p\) boundary value problems on Lipschitz domains, Adv. Math., 216, 212-254 (2007) · Zbl 1210.35080 · doi:10.1016/j.aim.2007.05.017
[18] Z. Shen, \( W^{1, p}\) estimates for elliptic homogenization problems in nonsmooth domains, Indiana Uni. Math. J., 57, 2283-2298 (2008) · Zbl 1166.35013
[19] Z. Shen, Periodic Homogenization of Elliptic Systems, Birkhäuser/Springer, Cham, 2018. · Zbl 1409.35007
[20] E. M. Stein, Singular Integrals and Differentiability Properties of Functions (1970) · Zbl 0207.13501
[21] J. L. S. R. M. Taylor Kim Brown, The Green function for elliptic systems in two dimensions, Commun. Partial Differ. Equ., 38, 1574-1600 (2013) · Zbl 1279.35021 · doi:10.1080/03605302.2013.814668
[22] Q. Xu, Uniform regularity estimates in homogenization theory of elliptic system with lower order terms, J. Math. Anal. Appl., 438, 1066-1107 (2016) · Zbl 1337.35009 · doi:10.1016/j.jmaa.2016.02.011
[23] Q. Xu, Uniform regularity estimates in homogenization theory of elliptic systems with lower order terms on the Neumann boundary problem, J. Differ. Equ., 261, 4368-4423 (2016) · Zbl 1353.35047 · doi:10.1016/j.jde.2016.06.027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.