×

Relativistic type systems with parametric odd nonlinearities. (English) Zbl 1525.34046

The authors consider the equation driven by a nonlinear relativistic operator with odd perturbations and with periodic, Neumann and Dirichlet boundary conditions for which they prove the existence of multiple distinct pairs of nontrivial solutions. Numerous illustrative examples concerning special type of nonlinear terms are provided. The approach is based on critical point theory for convex, lower semicontinuous perturbations of \(C^1\)-functionals developed by A. Szulkin [Ann. Inst. Henri Poincaré, Anal. Non Linéaire 3, 77–109 (1986; Zbl 0612.58011)].

MSC:

34B08 Parameter dependent boundary value problems for ordinary differential equations
34B15 Nonlinear boundary value problems for ordinary differential equations
47J30 Variational methods involving nonlinear operators

Citations:

Zbl 0612.58011
Full Text: DOI

References:

[1] D. Arcoya, C. Bereanu and P. J. Torres, Lusternik-Schnirelman theory for the action integral of the Lorentz force equation, Calc. Var. Partial Differ. Equ., 59 (2020), 32 pp. · Zbl 1434.78006
[2] C. P. Bereanu Jebelean, Multiple critical points for a class of periodic lower semicontinuous functionals, Discret. Contin. Dyn. Syst. Ser. A, 33, 47-66 (2013) · Zbl 1281.34024 · doi:10.3934/dcds.2013.33.47
[3] C. P. J. Bereanu Torres, Existence of at least two periodic solutions of the forced relativistic pendulum, Proc. Amer. Math. Soc., 140, 2713-2719 (2012) · Zbl 1275.34057 · doi:10.1090/S0002-9939-2011-11101-8
[4] A. W. G. Boscaggin Dambrosio Feltrin, Periodic solutions to a perturbed relativistic Kepler problem, SIAM J. Math. Anal., 53, 5813-5834 (2021) · Zbl 1489.34064 · doi:10.1137/20M1333547
[5] H. J. Brézis Mawhin, Periodic solutions of the forced relativistic pendulum, Differ. Integral Equ., 23, 801-810 (2010) · Zbl 1240.34207
[6] H. J. Brézis Mawhin, Periodic solutions of Lagrangian systems of relativistic oscillators, Commun. Appl. Anal., 15, 235-250 (2011) · Zbl 1235.34130
[7] K. J. Z. Q. Hata Liu Wang, Note on periodic solutions of relativistic pendulum type systems, Topol. Methods Nonlinear Anal., 42, 417-425 (2013) · Zbl 1300.34092
[8] P. J. C. Jebelean Mawhin Şerban, Multiple periodic solutions for perturbed relativistic pendulum systems, Proc. Amer. Math. Soc., 143, 3029-3039 (2015) · Zbl 1327.34069 · doi:10.1090/S0002-9939-2015-12542-7
[9] P. J. C. Jebelean Mawhin Şerban, Multiple critical orbits to partial periodic perturbations of the \(p\)-relativistic operator, Appl. Math. Lett., 104, 106220 (2020) · Zbl 1441.35231 · doi:10.1016/j.aml.2020.106220
[10] P. C. Jebelean Şerban, Boundary value problems for discontinuous perturbations of singular \(\phi \)-Laplacian operator, J. Math. Anal. Appl., 431, 662-681 (2015) · Zbl 1338.34050 · doi:10.1016/j.jmaa.2015.06.004
[11] P. C. Jebelean Şerban, Fisher-Kolmogorov type perturbations of the relativistic operator: differential vs. difference, Proc. Amer. Math. Soc., 144, 2005-2014 (2018) · Zbl 1384.34031 · doi:10.1090/proc/13978
[12] P. C. Jebelean Şerban, Fisher-Kolmogorov type perturbations of the mean curvature operator in Minkowski space, Electron. J. Qual. Theor. Differ. Equ., 81, 1-12 (2020) · Zbl 1474.35329 · doi:10.14232/ejqtde.2020.1.81
[13] R. J. Manásevich Mawhin, The spectrum of \(p\)-Laplacian systems with various boundary conditions and applications, Adv. Differ. Equ., 5, 1289-1318 (2000) · Zbl 0992.34063
[14] J. Mawhin, Multiplicity of solutions of variational systems involving \(\phi \)-Laplacians with singular \(\phi\) and periodic nonlinearities, Discret. Contin. Dyn. Syst. Ser. A, 32, 4015-4026 (2012) · Zbl 1260.34076 · doi:10.3934/dcds.2012.32.4015
[15] J. Mawhin, Multiplicity of solutions of relativistic-type systems with periodic nonlinearities: a survey, Electron. J. Differ. Equ., Conf. 23, 77-86 (2016) · Zbl 1344.34001
[16] P. H. Rabinowitz, Variational methods for nonlinear eigenvalue problems, chapter in Eigenvalues of Non-Linear Problems, G. Prodi (ed.), vol. 67 of the series C.I.M.E. Summer Schools, 1974,139-195.
[17] P. H. Rabinowitz, Some Aspects of Critical Point Theory, MRC Tech. Rep. #2465, Madison, Wisconsin, 1983.
[18] B. Ricceri, Multiple periodic solutions of Lagrangian systems of relativistic oscillators, in Current Research in Nonlinear Analysis, Springer Optim. Appl. 135, Springer, Cham, 2018,249-258. · Zbl 1407.34057
[19] B. Ricceri, Another multiplicity result for the periodic solutions of certain systems, Linear Nonlinear Anal., 5, 371-378 (2019) · Zbl 1462.34071
[20] A. Szulkin, Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 3, 77-109 (1986) · Zbl 0612.58011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.