×

Taylor spectrum for modules over Lie algebras. (English. Russian original) Zbl 1529.17033

Funct. Anal. Appl. 56, No. 3, 159-168 (2022); translation from Funkts. Anal. Prilozh. 56, No. 3, 3-15 (2022).
Summary: In this paper, we generalize the notion of the Taylor spectrum to modules over an arbitrary Lie algebra and study it for finite-dimensional modules. We show that the spectrum can be described as the set of simple submodules in the case of nilpotent and semisimple Lie algebras. We also show that this result does not hold for solvable Lie algebras and obtain a precise description of the spectrum in the case of Borel subalgebras of semisimple Lie algebras.

MSC:

17B56 Cohomology of Lie (super)algebras
47A13 Several-variable operator theory (spectral, Fredholm, etc.)

Software:

MathOverflow

References:

[1] Beltiţă, D.; Şabac, M., Lie Algebras of Bounded Operators (2001), Basel: Birkhäuser Verlag, Basel · Zbl 1084.47500 · doi:10.1007/978-3-0348-8332-0
[2] B. Bilich, Homology of solvable (nilpotent) Lie algebras, https://mathoverflow.net/ q/330854.
[3] Boasso, E.; Larotonda, A., A spectral theory for solvable Lie algebras of operators, Pacific J. Math., 158, 1, 15-22 (1993) · Zbl 0789.47004 · doi:10.2140/pjm.1993.158.15
[4] Bourbaki, N., Elements of Mathematics, (2005), Berlin: Springer-Verlag, Berlin · Zbl 1139.17002
[5] Cagliero, L.; Tirao, P., Total cohomology of solvable Lie algebras and linear deformations, Trans. Amer. Math. Soc., 368, 5, 3341-3358 (2016) · Zbl 1397.17023 · doi:10.1090/tran/6424
[6] Coll, Jr., V. E.; Gerstenhaber, M., Cohomology of Lie semidirect products and poset algebras, J. Lie Theory, 26, 1, 79-95 (2016) · Zbl 1404.17032
[7] Dosiev, A., Ultraspectra of a representation of a Banach Lie algebra, Funkts. Anal. Prilozhen., 35, 3, 80-84 (2001) · Zbl 1028.46077
[8] Dosiev, A., Algebras of power series of elements of a Lie algebra and the Slodkowski spectra, Zap. Nauchn. Sem. POMI, 290, 72-101 (2002)
[9] Dosiev, A., Projection property of spectra for solvable Lie algebra representations, Trans. Acad. Sci. Azerb., Ser. Phys.-Tech. Math. Sci., 23, 1, 27-32 (2003) · Zbl 1228.47007
[10] Dosi, A., Taylor functional calculus for supernilpotent Lie algebra of operators, J. Operator Theory, 63, 1, 191-216 (2010) · Zbl 1224.46096
[11] Fainshtein, A. S., Taylor joint spectrum for families of operators generating nilpotent Lie algebras, J. Operator Theory, 29, 1, 3-27 (1993) · Zbl 0859.47005
[12] Guichardet, A., Cohomologie des groupes topologiques et des algèbres de Lie (1980), Paris: CEDIC, Paris · Zbl 0464.22001
[13] Humphreys, J. E., Introduction to Lie Algebras and Representation Theory. Second printing, revised (1978), New York-Berlin: Springer-Verlag, New York-Berlin · Zbl 0447.17001
[14] Knapp, A. W., Lie Groups, Lie Algebras, and Cohomology (1988), Princeton, NJ: Princeton University Press, Princeton, NJ · Zbl 0648.22010
[15] Millionshchikov, D. V., Cohomology of solvable Lie algebras, and solvmanifolds, Mat. Zametki, 77, 1, 67-79 (2005) · Zbl 1085.17013
[16] Taylor, J. L., A joint spectrum for several commuting operators, J. Funct. Anal., 6, 172-191 (1970) · Zbl 0233.47024 · doi:10.1016/0022-1236(70)90055-8
[17] Taylor, J. L., The analytic-functional calculus for several commuting operators, Acta Math., 125, 1-38 (1970) · Zbl 0233.47025 · doi:10.1007/BF02392329
[18] Taylor, J. L., A general framework for a multi-operator functional calculus, Adv. Math., 9, 183-252 (1972) · Zbl 0271.46041 · doi:10.1016/0001-8708(72)90017-5
[19] Weibel, C. A., An Introduction to Homological Algebra (1994), Cambridge: Cambridge University Press, Cambridge · Zbl 0797.18001 · doi:10.1017/CBO9781139644136
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.