×

On the notion of persistence of excitation for linear switched systems. (English) Zbl 1511.93064

Summary: The paper formulates the concept of persistence of excitation for discrete-time linear switched systems, and provides sufficient conditions for an input signal to be persistently exciting. Persistence of excitation is formulated as a property of the input signal, and it is not tied to any specific identification algorithm. The results of the paper rely on realization theory and on the notion of Markov-parameters for linear switched systems.

MSC:

93C30 Control/observation systems governed by functional relations other than differential equations (such as hybrid and switching systems)
93B30 System identification
93C55 Discrete-time control/observation systems
93C05 Linear systems in control theory

References:

[1] Sun, Z.; Ge, S. S., Switched linear systems : control and design (2005), Springer, London · Zbl 1075.93001
[2] Petreczky, M.; Bako, L.; Schuppen, v. J., Realization theory for discrete-time linear switched systems, Automatica, 49, 11, 3337-3344 (2013) · Zbl 1315.93026
[3] R. Vidal, A. Chiuso, S. Sastry, Observability and Identifiability of Jump Linear Systems, in: Proc. IEEE Conf. Dec. and Control, 2002, pp. 3614-3619.
[4] Y. Ma, R. Vidal, Identification of Deterministic Switched ARX Systems via Identification of Algebraic Varieties, in: Hybrid Systems: Computation and Control, Vol. 3414, in: Lecture Notes in Computer Science, 2005, pp. 449-465. · Zbl 1078.93018
[5] Y. Hashambhoy, R. Vidal, Recursive Identification of Switched ARX Models with Unknown Number of Models and Unknown Orders, in: IEEE Conference on Decision and Control, 2005.
[6] Y. Ma, R. Vidal, A Closed Form Solution to the Identification of Hybrid ARX Models via the Identification of Algebraic Varieties, in: Hybrid Systems: Computation and Control, 2005, pp. 449-465. · Zbl 1078.93018
[7] Paoletti, S.; Juloski, A.; Ferrari-Trecate, G.; Vidal, R., Identification of hybrid systems: A tutorial, Eur. J. Control, 13, 2-3, 242-260 (2007) · Zbl 1293.93219
[8] Vidal, R., Recursive identification of switched ARX systems, Automatica, 44, 9, 2274-2287 (2008) · Zbl 1153.93010
[9] Juloski, A.; Heemels, W.; Ferrari-Trecate, G.; Vidal, R.; Paoletto, S.; Niessen, J., Comparison of four procedures for the identification of hybrid systems, (Hybrid Systems: Computation and Control, Vol. 3414. Hybrid Systems: Computation and Control, Vol. 3414, LNCS (2005), Springer-Verlag: Springer-Verlag Berlin), 354-369 · Zbl 1078.93534
[10] Ferrari-Trecate, G.; Muselli, M.; Liberati, D.; Morari, M., A clustering technique for the identification of piecewise-affine systems, Automatica, 39, 205-217 (2003) · Zbl 1011.93508
[11] A. Juloski, S. Weiland, M. Heemels, A Bayesian Approach to Identification of Hybrid Systems, in: Proceedings of 43rd IEEE Conference on Decision and Control, 2004. · Zbl 1365.93526
[12] Juloski, A., Observer Design and Identification Methods for Hybrid Systems: Theory and Experiments (2004), Eindhoven Universtity of Technology, (Ph.D. thesis)
[13] L. Bako, G. Mercère, R. Vidal, S. Lecoeuche, Identification of switched linear state space models without minimum dwell time, in: IFAC Symposium on System Identification, Saint Malo, France, 2009. · Zbl 1168.93329
[14] Bako, L.; Mercère, G.; Lecoeuche, S., Online structured subspace identification with application to switched linear systems, Internat. J. Control, 82, 1496-1515 (2009) · Zbl 1168.93329
[15] Roll, J.; Bemporad, A.; Ljung, L., Identification of piecewise affine systems via mixed-integer programming, Automatica, 40, 1, 37-50 (2004) · Zbl 1037.93023
[16] Fox, E., Bayesian Nonparametric Learning of Complex Dynamical Phenomena (2009), MIT: MIT Cambridge, MA, (Ph.D. thesis)
[17] V. Verdult, M. Verhaegen, Subspace Identification of Piecewise Linear Systems, in: Proc.Conf. Decision and Control, 2004. · Zbl 1008.93026
[18] S. Paoletti, J. Roll, A. Garulli, A. Vicino, Input/ouput realization of piecewise affine state space models, in: 46th IEEE Conf. on Dec. and Control, 2007. · Zbl 1368.93099
[19] Bako, L., Identification of switched linear systems via sparse optimization, Automatica (2011) · Zbl 1215.93034
[20] Bako, L., Analysis of the least sum-of-minimums estimator for switched systems, IEEE Trans. Automat. Control, 66, 8, 3733-3740 (2021) · Zbl 1471.93070
[21] Lauer, F.; Bloch, G., (Hybrid System Identification: Theory and Algorithms for Learning Switching Models, Vol. 478. Hybrid System Identification: Theory and Algorithms for Learning Switching Models, Vol. 478, Lecture Notes in Control and Information Sciences (2019), Springer International Publishing) · Zbl 1402.93010
[22] V. Breschi, D. Piga, A. Bemporad, Learning hybrid models with logical and continuous dynamics via multiclass linear separation, in: IEEE 55th Conference on Decision and Control, CDC, 2016, pp. 353-358.
[23] R. Vidal, S. Sastry, A. Chiuso, Observability of Linear Hybrid Systems, in: Hybrid Systems: Computation and Control, 2003. · Zbl 1032.93024
[24] A. Hiskens, Identifiability of hybrid system models, in: Proceedings of the IEEE International Conference on Control Applications, Anchorage, AK, 2000.
[25] R. Vidal, S. Soatto, Y. Ma, S. Sastry, An algebraic geometric approach to the identification of a class of linear hybrid systems, in: IEEE Conference on Decision and Control, 2003.
[26] Ljung, L., System Identification: Theory for the user (1999), PTR Prentice Hall: PTR Prentice Hall Upper Saddle River, USA
[27] Willems, J. C.; Rapisarda, P.; Markovsky, I.; Moor, B. L.D., A note on persistency of excitation, Systems Control Lett., 54, 4, 325-329 (2005) · Zbl 1129.93362
[28] M. Petreczky, L. Bako, On the notion of persistence of excitation for linear switched systems, in: 50th IEEE Conference on Decision and Control, CDC, 2011.
[29] M. Petreczky, L. Bako, On the notion of persistence of excitation for linear switched systems, Tech. Rep., 2011, ArXiv arXiv:1103.1349v1.
[30] Gécseg, F.; Peák, I., Algebraic Theory of Automata (1972), Akadémiai Kiadó, Budapest · Zbl 0246.94029
[31] Eilenberg, S., Automata, Languages and Machines (1974), Academic Press: Academic Press New York, London · Zbl 0317.94045
[32] Petreczky, M.; Bako, L.; van Schuppen, J., Identifiability of discrete-time linear switched systems, (Hybrid Systems: Computation and Control (2010), ACM) · Zbl 1360.93187
[33] Petreczky, M.; van Schuppen, J. H., Partial-realization of linear switched systems: A formal power series approach, Automatica, 47, 10, 2177-2184 (2011) · Zbl 1228.93026
[34] Bastug, M.; Petreczky, M.; Wisniewski, R.; Leth, J., Model reduction by moment matching for linear switched systems, IEEE Trans. Automat. Control, 61, 3422-3437 (2016) · Zbl 1359.93104
[35] Cox, P.; Tóth, R.; Petreczky, M., Towards efficient maximum likelihood estimation of LPV-SS models, Automatica, 97, 392-403 (2018) · Zbl 1406.93355
[36] M. Petreczky, R. Peeters, Spaces of nonlinear and hybrid systems representable by recognizable formal power series, in: Proceedings 19th International Symposium on Mathematical Theory of Networks and Systems, 2010, pp. 1051-1058.
[37] Bastug, M., Model Reduction of Linear Switched Systems and LPV State-Space Models (2016), Aalborg University, (Ph.D. thesis)
[38] Ge, S.; Sun, Z.; Lee, T., Reachability and controllability of switched linear discrete-time systems, IEEE Trans. Automat. Control, 46, 9, 1437-1441 (2001) · Zbl 1031.93028
[39] Ji, Z.; Feng, G.; Guo, X., A constructive approach to reachability realization of discrete-time switched linear systems, Systems Control Lett., 56, 11, 669-677 (2007) · Zbl 1120.93005
[40] Petreczky, M.; Vidal, R., Realization theory for a class of stochastic bilinear systems, IEEE Trans. Automat. Control, 63, 1, 69-84 (2017) · Zbl 1390.93211
[41] Petreczky, M., Realization theory of linear and bilinear switched systems: A formal power series approach: Part I, (ESAIM Control, Optimization and Calculus of Variations (2010))
[42] van den Hof, J., System theory and system identification of compartmental systems (1996), University of Groningen, (Ph.D. thesis)
[43] Bilingsley, P., Probability and Measure (1986), Wiley · Zbl 0649.60001
[44] Katayama, T., Subspace Methods for System Identification (2005), Springer-Verlag · Zbl 1118.93002
[45] van Overschee, P.; Moor, B. D., Subspace Identification for Linear Systems (1996), Kluwer Academic Publishers · Zbl 0888.93001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.