×

A complex singlet extension of the standard model and multi-critical point principle. (English) Zbl 1520.83080

Summary: We study the Multi-critical Point Principle (MPP) in a complex singlet scalar extension of the Standard Model (CxSM). The MPP discussed in this study selects model parameters so that two low-energy vacua realized by scalar fields are degenerate. We further note that the MPP may inhibit the electroweak phase transition (EWPT) in a certain class of models where the tree-level potential plays an essential role in its realization. Despite that, we show that strong first-order EWPT still occurs even after imposing the MPP to the scalar potential of the CxSM due to the 1-loop corrections by the new scalar boson. We study the allowed parameter space where a mass of the additional scalar is degenerate with that of the Standard Model Higgs boson, which provides a built-in mechanism to circumvent constraints from dark matter direct detection experiments. The parameter space for the non-degenerate scalar scenario is also studied for comparison.

MSC:

83F05 Relativistic cosmology
83C56 Dark matter and dark energy
57R70 Critical points and critical submanifolds in differential topology
55P05 Homotopy extension properties, cofibrations in algebraic topology
82B26 Phase transitions (general) in equilibrium statistical mechanics
83C25 Approximation procedures, weak fields in general relativity and gravitational theory
83C30 Asymptotic procedures (radiation, news functions, \(\mathcal{H} \)-spaces, etc.) in general relativity and gravitational theory
81V73 Bosonic systems in quantum theory

References:

[1] Aad, G., Phys. Lett. B, 716, 1 (2012)
[2] Chatrchyan, S., Phys. Lett. B, 716, 30 (2012)
[3] Aad, G., Phys. Rev. D, 101, Article 012002 pp. (2020)
[4] CMS collaboration, 2020, CMS-PAS-HIG-19-005.
[5] Aprile, E., J. Cosmol. Astropart. Phys., 11, Article 031 pp. (2020)
[6] Aalbers, J. (2022)
[7] Barger, V.; Langacker, P.; McCaskey, M.; Ramsey-Musolf, M.; Shaughnessy, G., Phys. Rev. D, 79, Article 015018 pp. (2009)
[8] Barger, V.; McCaskey, M.; Shaughnessy, G., Phys. Rev. D, 82, Article 035019 pp. (2010)
[9] Gonderinger, M.; Lim, H.; Ramsey-Musolf, M. J., Phys. Rev. D, 86, Article 043511 pp. (2012)
[10] Coimbra, R.; Sampaio, M. O.P.; Santos, R., Eur. Phys. J. C, 73, 2428 (2013)
[11] Jiang, M.; Bian, L.; Huang, W.; Shu, J., Phys. Rev. D, 93, Article 065032 pp. (2016)
[12] Chiang, C.-W.; Ramsey-Musolf, M. J.; Senaha, E., Phys. Rev. D, 97, Article 015005 pp. (2018)
[13] Cheng, W.; Bian, L., Phys. Rev. D, 98, Article 023524 pp. (2018)
[14] Grzadkowski, B.; Huang, D., J. High Energy Phys., 08, Article 135 pp. (2018)
[15] Chen, N.; Li, T.; Wu, Y.; Bian, L., Phys. Rev. D, 101, Article 075047 pp. (2020)
[16] Egle, F.; Mühlleitner, M.; Santos, R.; Viana, J.a., Phys. Rev. D, 106, Article 095030 pp. (2022)
[17] Abe, S.; Cho, G.-C.; Mawatari, K., Phys. Rev. D, 104, Article 035023 pp. (2021)
[18] Kuzmin, V. A.; Rubakov, V. A.; Shaposhnikov, M. E., Phys. Lett. B, 155, 36 (1985)
[19] Cho, G.-C.; Idegawa, C.; Senaha, E., Phys. Lett. B, 823, Article 136787 pp. (2021) · Zbl 1483.81156
[20] Cho, G.-C.; Idegawa, C.; Senaha, E., Phys. Rev. D, 106, Article 115012 pp. (2022)
[21] Bennett, D. L.; Nielsen, H. B., Int. J. Mod. Phys. A, 9, 5155 (1994)
[22] Bennett, D. L.; Nielsen, H. B., Int. J. Mod. Phys. A, 14, 3313 (1999)
[23] Bennett, D. L., Multiple point criticality, nonlocality, and fine tuning in fundamental physics: Predictions for gauge coupling constants gives alpha**-1 = 136.8 +- 9 (1996), Ph.D. thesis
[24] Froggatt, C. D.; Nielsen, H. B., Phys. Lett. B, 368, 96 (1996)
[25] Kannike, K.; Koivunen, N.; Raidal, M., Nucl. Phys. B, 968, Article 115441 pp. (2021) · Zbl 07408568
[26] Gross, C.; Lebedev, O.; Toma, T., Phys. Rev. Lett., 119, Article 191801 pp. (2017)
[27] Khachatryan, V., Eur. Phys. J. C, 74, 3076 (2014)
[28] Weinberg, E. J., Radiative corrections as the origin of spontaneous symmetry breaking (1973), Harvard U, Ph.D. thesis
[29] Jackiw, R., Phys. Rev. D, 9, 1686 (1974)
[30] Dolan, L.; Jackiw, R., Phys. Rev. D, 9, 3320 (1974)
[31] Arnold, P. B.; McLerran, L. D., Phys. Rev. D, 36, 581 (1987)
[32] Bochkarev, A. I.; Shaposhnikov, M. E., Mod. Phys. Lett. A, 2, 417 (1987)
[33] Funakubo, K.; Senaha, E., Phys. Rev. D, 79, Article 115024 pp. (2009)
[34] Chung, D. J.H.; Long, A. J.; Wang, L.-T., Phys. Rev. D, 87, Article 023509 pp. (2013)
[35] Aghanim, N., Astron. Astrophys., 641, A6 (2020); Aghanim, N., Erratum, Astron. Astrophys., 652, C4 (2021)
[36] Belanger, G.; Mjallal, A.; Pukhov, A., Eur. Phys. J. C, 81, 239 (2021)
[37] Aaboud, M., Phys. Lett. B, 786, 223 (2018)
[38] Tumasyan, A., Nat. Phys., 18, 1329 (2022)
[39] Andersen, J. R., LHC Higgs Cross Section Working Group (2013)
[40] Wainwright, C. L., Comput. Phys. Commun., 183, 2006 (2012)
[41] Parwani, R. R., Phys. Rev. D, 45, 4695 (1992); Parwani, R. R., Erratum, Phys. Rev. D, 48, 5965 (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.