×

Probing the nuclear deformation with three-particle asymmetric cumulant in RHIC isobar runs. (English) Zbl 1521.81427

Summary: \(_{44}^{96}\mathrm{Ru}+_{44}^{96}\mathrm{Ru}\) and \(_{40}^{96}\mathrm{Zr}+_{40}^{96}\mathrm{Zr}\) collisions at \(\sqrt{ s_{_{\operatorname{NN}}}} = 200\) GeV provide unique opportunities to study the geometry and fluctuations raised from the deformation of the colliding nuclei. Using iEBE-VISHNU hybrid model, we predict \(\operatorname{ac}_2 \{3 \}\) ratios between these two collision systems and demonstrate that the ratios of \(\operatorname{ac}_2 \{3 \} \), as well as the ratios of the involving flow harmonics and event-plane correlations, are sensitive to quadrupole and octupole deformations, which could provide strong constrains on the shape differences between \(^{96}\mathrm{Ru}\) and \(^{96}\mathrm{Zr}\). We also study the nonlinear response coefficients \(\chi_{4 , 22} \), which show insensitivity to the deformation effect.

MSC:

81U35 Inelastic and multichannel quantum scattering
81V35 Nuclear physics
81V60 Mono-, di- and multipole moments (EM and other), gyromagnetic relations
54C56 Shape theory in general topology

Software:

iEBE-VISHNU

References:

[1] Adams, J., Experimental and theoretical challenges in the search for the quark gluon plasma: the STAR Collaboration’s critical assessment of the evidence from RHIC collisions, Nucl. Phys. A, 757, 102-183 (2005)
[2] Adcox, K., Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: experimental evaluation by the PHENIX collaboration, Nucl. Phys. A, 757, 184-283 (2005)
[3] Aamodt, K., Elliptic flow of charged particles in Pb-Pb collisions at 2.76 TeV, Phys. Rev. Lett., 105, Article 252302 pp. (2010)
[4] Romatschke, P.; Romatschke, U., Viscosity information from relativistic nuclear collisions: how perfect is the fluid observed at RHIC?, Phys. Rev. Lett., 99, Article 172301 pp. (2007)
[5] Teaney, D. A., Viscous Hydrodynamics and the Quark Gluon Plasma, 207-266 (2010)
[6] Song, H.; Bass, S. A.; Heinz, U.; Hirano, T.; Shen, C., 200 A GeV Au+Au collisions serve a nearly perfect quark-gluon liquid, Phys. Rev. Lett.. Phys. Rev. Lett., Phys. Rev. Lett., 109, Article 139904 pp. (2012), Erratum:
[7] Niemi, H.; Denicol, G. S.; Huovinen, P.; Molnar, E.; Rischke, D. H., Influence of the shear viscosity of the quark-gluon plasma on elliptic flow in ultrarelativistic heavy-ion collisions, Phys. Rev. Lett., 106, Article 212302 pp. (2011)
[8] Heinz, U.; Snellings, R., Collective flow and viscosity in relativistic heavy-ion collisions, Annu. Rev. Nucl. Part. Sci., 63, 123-151 (2013)
[9] Song, H.; Zhou, Y.; Gajdosova, K., Collective flow and hydrodynamics in large and small systems at the LHC, Nucl. Sci. Tech., 28, 7, 99 (2017)
[10] Gyulassy, M.; Vitev, I.; Wang, X.-N.; Zhang, B.-W., Jet quenching and radiative energy loss in dense nuclear matter, (Hwa, R. C.; etal., Quark Gluon Plasma (2003))
[11] Kovtun, P.; Son, D.; Starinets, A., Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett., 94, Article 111601 pp. (2005)
[12] Schenke, B.; Jeon, S.; Gale, C., Elliptic and triangular flow in event-by-event (3+1) D viscous hydrodynamics, Phys. Rev. Lett., 106, Article 042301 pp. (2011)
[13] Song, H., QGP viscosity at RHIC and the LHC - a 2012 status report, Nucl. Phys. A, 904-905, 114c-121c (2013)
[14] Gale, C.; Jeon, S.; Schenke, B.; Tribedy, P.; Venugopalan, R., Event-by-event anisotropic flow in heavy-ion collisions from combined Yang-Mills and viscous fluid dynamics, Phys. Rev. Lett., 110, 1, Article 012302 pp. (2013)
[15] Gale, C.; Jeon, S.; Schenke, B., Hydrodynamic modeling of heavy-ion collisions, Int. J. Mod. Phys. A, 28, Article 1340011 pp. (2013)
[16] Xu, H.-j.; Li, Z.; Song, H., High-order flow harmonics of identified hadrons in 2.76A TeV Pb + Pb collisions, Phys. Rev. C, 93, 6, Article 064905 pp. (2016)
[17] Bernhard, J. E.; Moreland, J. S.; Bass, S. A.; Liu, J.; Heinz, U., Applying Bayesian parameter estimation to relativistic heavy-ion collisions: simultaneous characterization of the initial state and quark-gluon plasma medium, Phys. Rev. C, 94, 2, Article 024907 pp. (2016)
[18] McDonald, S.; Shen, C.; Fillion-Gourdeau, F.; Jeon, S.; Gale, C., Hydrodynamic predictions for Pb+Pb collisions at 5.02 TeV, Phys. Rev. C, 95, 6, Article 064913 pp. (2017)
[19] Zhao, W.; Xu, H.-j.; Song, H., Collective flow in 2.76 A TeV and 5.02 A TeV Pb+Pb collisions, Eur. Phys. J. C, 77, 9, 645 (2017)
[20] Bilandzic, A.; Snellings, R.; Voloshin, S., Flow analysis with cumulants: direct calculations, Phys. Rev. C, 83, Article 044913 pp. (2011)
[21] Bilandzic, A.; Christensen, C. H.; Gulbrandsen, K.; Hansen, A.; Zhou, Y., Generic framework for anisotropic flow analyses with multiparticle azimuthal correlations, Phys. Rev. C, 89, 6, Article 064904 pp. (2014)
[22] Bhalerao, R. S.; Ollitrault, J.-Y.; Pal, S., Event-plane correlators, Phys. Rev. C, 88, Article 024909 pp. (2013)
[23] Aad, G., Measurement of long-range pseudorapidity correlations and azimuthal harmonics in \(\sqrt{ s_{N N}} = 5.02\) TeV proton-lead collisions with the ATLAS detector, Phys. Rev. C, 90, 4, Article 044906 pp. (2014)
[24] Yan, L.; Ollitrault, J.-Y., \( \nu_4, \nu_5, \nu_6, \nu_7\): nonlinear hydrodynamic response versus LHC data, Phys. Lett. B, 744, 82-87 (2015)
[25] Jia, J.; Zhou, M.; Trzupek, A., Revealing long-range multiparticle collectivity in small collision systems via subevent cumulants, Phys. Rev. C, 96, 3, Article 034906 pp. (2017)
[26] Zhu, X.; Zhou, Y.; Xu, H.; Song, H., Correlations of flow harmonics in 2.76A TeV Pb-Pb collisions, Phys. Rev. C, 95, 4, Article 044902 pp. (2017)
[27] Aaboud, M., Correlated long-range mixed-harmonic fluctuations measured in pp, p+Pb and low-multiplicity Pb+Pb collisions with the ATLAS detector, Phys. Lett. B, 789, 444-471 (2019)
[28] Zhang, C.; Jia, J.; Xu, J., Non-flow effects in three-particle mixed-harmonic azimuthal correlations in small collision systems, Phys. Lett. B, 792, 138-141 (2019)
[29] Li, M.; Zhou, Y.; Zhao, W.; Fu, B.; Mou, Y.; Song, H., Investigations on mixed harmonic cumulants in heavy-ion collisions at energies available at the CERN Large Hadron Collider, Phys. Rev. C, 104, 2, Article 024903 pp. (2021)
[30] Abdallah, M., Search for the chiral magnetic effect with isobar collisions at \(\sqrt{ s_{N N}} =200\) GeV by the STAR Collaboration at the BNL Relativistic Heavy Ion Collider, Phys. Rev. C, 105, 1, Article 014901 pp. (2022)
[31] Xu, H.-j.; Zhao, W.; Li, H.; Zhou, Y.; Chen, L.-W.; Wang, F., Probing nuclear structure with mean transverse momentum in relativistic isobar collisions
[32] Xu, H.-J.; Wang, X.; Li, H.; Zhao, J.; Lin, Z.-W.; Shen, C.; Wang, F., Importance of isobar density distributions on the chiral magnetic effect search, Phys. Rev. Lett., 121, 2, Article 022301 pp. (2018)
[33] Li, H.; Xu, H.-j.; Zhao, J.; Lin, Z.-W.; Zhang, H.; Wang, X.; Shen, C.; Wang, F., Multiphase transport model predictions of isobaric collisions with nuclear structure from density functional theory, Phys. Rev. C, 98, 5, Article 054907 pp. (2018)
[34] Li, H.; Xu, H.-j.; Zhou, Y.; Wang, X.; Zhao, J.; Chen, L.-W.; Wang, F., Probing the neutron skin with ultrarelativistic isobaric collisions, Phys. Rev. Lett., 125, 22, Article 222301 pp. (2020)
[35] Rosenhauer, A.; Stocker, H.; Maruhn, J. A.; Greiner, W., Influence of shape fluctuations in relativistic heavy ion collisions, Phys. Rev. C, 34, 185-190 (1986)
[36] Bernhard, J. E.; Moreland, J. S.; Bass, S. A., Bayesian estimation of the specific shear and bulk viscosity of quark-gluon plasma, Nat. Phys., 15, 11, 1113-1117 (2019)
[37] Filip, P.; Lednicky, R.; Masui, H.; Xu, N., Initial eccentricity in deformed Au-197 + Au-197 and U-238 + U-238 collisions at sNN=200 GeV at the BNL Relativistic Heavy Ion Collider, Phys. Rev. C, 80, Article 054903 pp. (2009)
[38] Giacalone, G., Observing the deformation of nuclei with relativistic nuclear collisions, Phys. Rev. Lett., 124, 20, Article 202301 pp. (2020)
[39] Zhang, C.; Jia, J., Evidence of quadrupole and octupole deformations in Zr96+Zr96 and Ru96+Ru96 collisions at ultrarelativistic energies, Phys. Rev. Lett., 128, 2, Article 022301 pp. (2022)
[40] Shou, Q. Y.; Ma, Y. G.; Sorensen, P.; Tang, A. H.; Videbæk, F.; Wang, H., Parameterization of deformed nuclei for Glauber modeling in relativistic heavy ion collisions, Phys. Lett. B, 749, 215-220 (2015)
[41] Xu, H.-j.; Li, H.; Wang, X.; Shen, C.; Wang, F., Determine the neutron skin type by relativistic isobaric collisions, Phys. Lett. B, 819, Article 136453 pp. (2021)
[42] Xu, H.-j.; Li, H.; Zhou, Y.; Wang, X.; Zhao, J.; Chen, L.-W.; Wang, F., Measuring neutron skin by grazing isobaric collisions, Phys. Rev. C, 105, 1, Article L011901 pp. (2022)
[43] Jia, J., Probing triaxial deformation of atomic nuclei in high-energy heavy ion collisions, Phys. Rev. C, 105, 4, Article 044905 pp. (2022)
[44] Liu, L.-M.; Zhang, C.-J.; Zhou, J.; Xu, J.; Jia, J.; Peng, G.-X., Probing neutron-skin thickness with free spectator neutrons in ultracentral high-energy isobaric collisions, Phys. Lett. B, 834, Article 137441 pp. (2022)
[45] Moreland, J. S.; Bernhard, J. E.; Bass, S. A., Bayesian calibration of a hybrid nuclear collision model using p-Pb and Pb-Pb data at energies available at the CERN Large Hadron Collider, Phys. Rev. C, 101, 2, Article 024911 pp. (2020)
[46] Shen, C.; Qiu, Z.; Song, H.; Bernhard, J.; Bass, S.; Heinz, U., The iEBE-VISHNU code package for relativistic heavy-ion collisions, Comput. Phys. Commun., 199, 61-85 (2016)
[47] Song, H.; Bass, S. A.; Heinz, U., Viscous QCD matter in a hybrid hydrodynamic+Boltzmann approach, Phys. Rev. C, 83, Article 024912 pp. (2011)
[48] Song, H.; Heinz, U. W., Causal viscous hydrodynamics in 2+1 dimensions for relativistic heavy-ion collisions, Phys. Rev. C, 77, Article 064901 pp. (2008)
[49] Song, H.; Heinz, U. W., Suppression of elliptic flow in a minimally viscous quark-gluon plasma, Phys. Lett. B, 658, 279-283 (2008)
[50] Bass, S. A., Microscopic models for ultrarelativistic heavy ion collisions, Prog. Part. Nucl. Phys.. Prog. Part. Nucl. Phys., Prog. Part. Nucl. Phys., 41, 225-369 (1998)
[51] Bleicher, M., Relativistic hadron-hadron collisions in the ultrarelativistic quantum molecular dynamics model, J. Phys. G, 25, 1859-1896 (1999)
[52] Moreland, J. S.; Bernhard, J. E.; Bass, S. A., Alternative ansatz to wounded nucleon and binary collision scaling in high-energy nuclear collisions, Phys. Rev. C, 92, 1, Article 011901 pp. (2015)
[53] Nijs, G.; van der Schee, W., Inferring nuclear structure from heavy isobar collisions using Trajectum
[54] S. Zhao, et al., Extracting the nuclear structure parameters in relativistic isobar collisions.
[55] J. Wang, et al., Importance of initial fluctuations on anisotropic flow in relativistic isobar collisions.
[56] Luzum, M.; Gombeaud, C.; Ollitrault, J.-Y., \( v_4\) in ideal and viscous hydrodynamics simulations of nuclear collisions at the BNL Relativistic Heavy Ion Collider (RHIC) and the CERN Large Hadron Collider (LHC), Phys. Rev. C, 81, Article 054910 pp. (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.