×

Investigation of the quasinormal modes of a Schwarzschild black hole by a new generalized approach. (English) Zbl 1520.83054

Summary: This paper introduces a new analytical approach for the calculation of Quasi Normal Modes (QNMs) of black holes. The proposed method employs the Rosen-Morse function, in order to find the approximated quasi-normal frequencies of Schwarzschild black hole. The presented method, compared with the previous related method, demonstrates to be a more precise approximation. The corrected modes based on this research, are claimed to be a generalized form of QNMs found by Pösch-Teller function. The numerical results of the new approach are calculated and compared with the results obtained by Mashhoon method and numerical method.

MSC:

83C57 Black holes
83C25 Approximation procedures, weak fields in general relativity and gravitational theory

References:

[1] Maggiore, Michele, Gravitational wave experiments and early universe cosmology, Phys. Rep., 331, 6, 283-367 (2000)
[2] Konoplya, Roman A., Quasinormal modes of a small Schwarzschild-anti-de Sitter black hole, Phys. Rev. D, 66, 4, Article 044009 pp. (2002)
[3] Baker, John G.; Centrella, Joan; Choi, Dae-Il; Koppitz, Michael; van Meter, James, Gravitational-wave extraction from an inspiraling configuration of merging black holes, Phys. Rev. Lett., 96, 11, Article 111102 pp. (2006)
[4] Berti, Emanuele; Cardoso, Vitor; Will, Clifford M., Gravitational-wave spectroscopy of massive black holes with the space interferometer LISA, Phys. Rev. D, 73, 6, Article 064030 pp. (2006)
[5] Abbott, Benjamin P.; Abbott, Richard; Abbott, T. D.; Abernathy, M. R.; Acernese, Fausto; Ackley, Kendall; Adams, Carl, Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett., 116, 6, Article 061102 pp. (2016)
[6] Liu, Hongya; Mashhoon, Bahram, On the spectrum of oscillations of a Schwarzschild black hole, Class. Quantum Gravity, 13, 2, 233 (1996) · Zbl 0845.53071
[7] Ferrari, Valeria; Mashhoon, Bahram, New approach to the quasinormal modes of a black hole, Phys. Rev. D, 30, 2, 295 (1984)
[8] Nollert, Hans-Peter, Quasinormal modes: the characteristic ‘sound’ of black holes and neutron stars, Class. Quantum Gravity, 16, 12 (1999), R159 · Zbl 0948.83032
[9] Horowitz, Gary T.; Hubeny, Veronika E., Quasinormal modes of AdS black holes and the approach to thermal equilibrium, Phys. Rev. D, 62, 2, Article 024027 pp. (2000)
[10] Berti, E.; Kokkotas, K. D., Quasinormal modes of Reissner-Nordström-anti-de Sitter black holes: scalar, electromagnetic, and gravitational perturbations, Phys. Rev. D, 67, 6, Article 064020 pp. (2003) · Zbl 1222.83091
[11] Berti, Emanuele; Cardoso, Vitor; Starinets, Andrei O., Quasinormal modes of black holes and black branes, Class. Quantum Gravity, 26, 16, Article 163001 pp. (2009) · Zbl 1173.83001
[12] Konoplya, R. A.; Zhidenko, Alexander, Quasinormal modes of black holes: from astrophysics to string theory, Rev. Mod. Phys., 83, 3, 793 (2011)
[13] Konoplya, R. A.; Zhidenko, A.; Zinhailo, A. F., Higher order WKB formula for quasinormal modes and grey-body factors: recipes for quick and accurate calculations, Class. Quantum Gravity, 36, 15, Article 155002 pp. (2019) · Zbl 1503.83008
[14] Blome, Hans-Joachim; Mashhoon, Bahram, Quasi-normal oscillations of a Schwarzschild black hole, Phys. Lett. A, 100, 5, 231-234 (1984)
[15] Pani, Paolo; Berti, Emanuele; Gualtieri, Leonardo, Scalar, electromagnetic, and gravitational perturbations of Kerr-Newman black holes in the slow-rotation limit, Phys. Rev. D, 88, 6, Article 064048 pp. (2013)
[16] Cardoso, Vitor; Lemos, Jose P. S., Quasinormal modes of Schwarzschild-anti-de Sitter black holes: electromagnetic and gravitational perturbations, Phys. Rev. D, 64, 8, Article 084017 pp. (2001)
[17] Nanda, Pritam; Singha, Chiranjeeb; Tripathy, Pabitra; Ghosh, Amit, Hawking radiation as quantum mechanical reflection (2022), arXiv preprint · Zbl 1515.83058
[18] Hawking, Stephen W., Particle creation by black holes, (Euclidean Quantum Gravity (1975)), 167-188 · Zbl 1378.83040
[19] Hawking, Stephen W., Black hole explosions?, Nature, 248, 5443, 30-31 (1974) · Zbl 1370.83053
[20] Blázquez-Salcedo, Jose Luis; Doneva, Daniela D.; Kunz, Jutta; Yazadjiev, Stoytcho S., Radial perturbations of the scalarized Einstein-Gauss-Bonnet black holes, Phys. Rev. D, 98, 8, Article 084011 pp. (2018)
[21] Myung, Yun Soo; Zou, De-Cheng, Instability of Reissner-Nordström black hole in Einstein-Maxwell-scalar theory, Eur. Phys. J. C, 79, 3, 1-11 (2019)
[22] Guo, Guangzhou; Wang, Peng; Wu, Houwen; Yang, Haitang, Scalarized Einstein-Maxwell-scalar black holes in anti-de Sitter spacetime, Eur. Phys. J. C, 81, 10, 1-14 (2021)
[23] Schutz, Bernard F.; Will, Clifford M., Black hole normal modes: a semianalytic approach, Astrophys. J., 291, L33-L36 (1985)
[24] Iyer, Sai; Will, Clifford M., Black-hole normal modes: a WKB approach. I. Foundations and application of a higher-order WKB analysis of potential-barrier scattering, Phys. Rev. D, 35, 12, 3621 (1987)
[25] Seidel, Edward; Iyer, Sai, Black-hole normal modes: a WKB approach. IV. Kerr black holes, Phys. Rev. D, 41, 2, 374 (1990)
[26] Konoplya, R. A., Quasinormal behavior of the D-dimensional Schwarzschild black hole and the higher order WKB approach, Phys. Rev. D, 68, 2, Article 024018 pp. (2003)
[27] Leaver, Edward W., Spectral decomposition of the perturbation response of the Schwarzschild geometry, Phys. Rev. D, 34, 2, 384 (1986) · Zbl 1222.83053
[28] Cardoso, Vitor; Lemos, José P. S.; Yoshida, Shijun, Quasinormal modes and stability of the rotating acoustic black hole: numerical analysis, Phys. Rev. D, 70, 12, Article 124032 pp. (2004)
[29] Ferrari, Valeria; Mashhoon, Bahram, Oscillations of a black hole, Phys. Rev. Lett., 52, 16, 1361 (1984)
[30] Mashhoon, Bahram; Hehl, Friedrich W.; Theiss, Dietmar S., On the gravitational effects of rotating masses: the Thirring-Lense papers, Gen. Relativ. Gravit., 16, 8, 711-750 (1984)
[31] Rosen, N.; Morse, Philip M., On the vibrations of polyatomic molecules, Phys. Rev., 42, 2, 210 (1932) · Zbl 0005.33001
[32] Konoplya, R. A., Quasinormal modes of the Schwarzschild black hole and higher order WKB approach, J. Phys. Stud., 8, 93 (2004) · Zbl 1081.83531
[33] Jing, Jiliang, Dirac quasinormal modes of Schwarzschild black hole, Phys. Rev. D, 71, 12, Article 124006 pp. (2005)
[34] Gradshteyn, Izrail Solomonovich; Ryzhik, Iosif Moiseevich, Table of Integrals, Series, and Products (2014), Academic Press
[35] Ponglertsakul, Supakchai; Gwak, Bogeun, Massive scalar perturbations on Myers-Perry-de Sitter black holes with a single rotation, Eur. Phys. J. C, 80, 11, 1-17 (2020)
[36] Cheung, Mark Ho-Yeuk; Destounis, Kyriakos; Panosso Macedo, Rodrigo; Berti, Emanuele; Cardoso, Vitor, Destabilizing the fundamental mode of black holes: the elephant and the flea, Phys. Rev. Lett., 128, 11, Article 111103 pp. (2022)
[37] Wuthicharn, Taum; Ponglertsakul, Supakchai; Burikham, Piyabut, Quasi-normal modes of near-extremal black holes and black strings in massive gravity background, Int. J. Mod. Phys. D, 31, 01, Article 2150127 pp. (2022) · Zbl 1514.81007
[38] Cardoso, V.; Lemos, J. P.S., Phys. Rev. D, 67, Article 084020 pp. (2003)
[39] Daghigh, Ramin G.; Green, Michael D.; Morey, Jodin C., Significance of black hole quasinormal modes: a closer look, Phys. Rev. D, 101, 10, Article 104009 pp. (2020)
[40] Bueno, Pablo; Cano, Pablo A.; Goelen, Frederik; Hertog, Thomas; Vercnocke, Bert, Echoes of Kerr-like wormholes, Phys. Rev. D, 97, 2, Article 024040 pp. (2018)
[41] Konoplya, Roman A.; Molina, Carlos, Ringing wormholes, Phys. Rev. D, 71, 12, Article 124009 pp. (2005)
[42] Price, Richard H.; Khanna, Gaurav, Gravitational wave sources: reflections and echoes, Class. Quantum Gravity, 34, 22, Article 225005 pp. (2017) · Zbl 1380.83075
[43] Webpage with Mathematica notebooks and numerical quasinormal mode Tables
[44] Rincón, Ángel; Santos, Victor, Greybody factor and quasinormal modes of Regular Black Holes, Eur. Phys. J. C, 80, 10, 1-7 (2020)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.