×

Parametric co-linear axion photon instability. (English) Zbl 1520.81177

Summary: Axions and axion-like particles generically couple to QED via the axion-photon-photon interaction. This leads to a modification of Maxwell’s equations known in the literature as axion-electrodynamics. The new form of Maxwell’s equations gives rise to a new parametric instability in which a strong pump decays into a scattered light wave and an axion. This axion mode grows exponentially in time and leads to a change in the polarisation of the initial laser beam, therefore providing a signal for detection. Currently operating laser systems can put bounds on the axion parameter space, however longer pulselengths are necessary to reach the current best laboratory bounds of light-shining through wall experiments.

MSC:

81V25 Other elementary particle theory in quantum theory
81V80 Quantum optics
81V10 Electromagnetic interaction; quantum electrodynamics
35Q61 Maxwell equations
14D15 Formal methods and deformations in algebraic geometry
70K50 Bifurcations and instability for nonlinear problems in mechanics
78A45 Diffraction, scattering
78A60 Lasers, masers, optical bistability, nonlinear optics

References:

[1] Baker, C. A., An improved experimental limit on the electric dipole moment of the neutron, Phys. Rev. Lett., 97, Article 131801 pp. (2006)
[2] Pendlebury, J. M., Revised experimental upper limit on the electric dipole moment of the neutron, Phys. Rev. D, 92, 9, Article 092003 pp. (2015)
[3] Peccei, R. D.; Quinn, Helen R., CP conservation in the presence of pseudoparticles, Phys. Rev. Lett., 38, 1440-1443 (Jun 1977)
[4] Peccei, R. D.; Quinn, Helen R., Constraints imposed by CP conservation in the presence of pseudoparticles, Phys. Rev. D, 16, 1791-1797 (Sep 1977)
[5] Weinberg, Steven, A new light boson?, Phys. Rev. Lett., 40, 223-226 (1978)
[6] Wilczek, Frank, Problem of strong P and T invariance in the presence of instantons, Phys. Rev. Lett., 40, 279-282 (1978)
[7] Preskill, John; Wise, Mark B.; Wilczek, Frank, Cosmology of the invisible axion, Phys. Lett. B, 120, 127-132 (1983)
[8] Abbott, L. F.; Sikivie, P., A cosmological bound on the invisible axion, Phys. Lett. B, 120, 133-136 (1983)
[9] Dine, Michael; Fischler, Willy, The not so harmless axion, Phys. Lett. B, 120, 137-141 (1983)
[10] Witten, Edward, Some properties of O(32) superstrings, Phys. Lett. B, 149, 351-356 (1984)
[11] Arvanitaki, Asimina; Dimopoulos, Savas; Dubovsky, Sergei; Kaloper, Nemanja; March-Russell, John, String axiverse, Phys. Rev. D, 81, Article 123530 pp. (2010)
[12] Wilczek, Frank, Two applications of axion electrodynamics, Phys. Rev. Lett., 58, 1799 (1987)
[13] Sikivie, Pierre, Invisible axion search methods, Rev. Mod. Phys., 93, Article 15004 pp. (2021)
[14] Sikivie, P., Experimental tests of the invisible axion, Phys. Rev. Lett.. Phys. Rev. Lett., Phys. Rev. Lett., 52, 695-1417 (1984), Erratum:
[15] Raffelt, Georg; Stodolsky, Leo, Mixing of the photon with low mass particles, Phys. Rev. D, 37, 1237 (1988)
[16] Maiani, L.; Petronzio, R.; Zavattini, E., Effects of nearly massless, spin-zero particles on light propagation in a magnetic field, Phys. Lett. B, 175, 3, 359-363 (August 1986)
[17] Della Valle, Federico; Ejlli, Aldo; Gastaldi, Ugo; Messineo, Giuseppe; Milotti, Edoardo; Pengo, Ruggero; Ruoso, Giuseppe; Zavattini, Guido, The PVLAS experiment: measuring vacuum magnetic birefringence and dichroism with a birefringent Fabry-Perot cavity, Eur. Phys. J. C, 76, 1, 24 (2016)
[18] Mendonca, J. T., Axion excitation by intense laser fields, Europhys. Lett., 79, 2, Article 21001 pp. (2007)
[19] Raffelt, Georg G., Plasmon decay into low-mass bosons in stars, Phys. Rev. D, 37, 6, 1356-1359 (March 1988)
[20] Terças, H.; Rodrigues, J. D.; Mendonça, J. T., Axion-plasmon polaritons in strongly magnetized plasmas, Phys. Rev. Lett., 120, 18, Article 181803 pp. (2018)
[21] Mendonça, J. T.; Rodrigues, J. D.; Terças, H., Axion production in unstable magnetized plasmas, Phys. Rev. D, 101, 5, Article 051701 pp. (2020)
[22] Huang, Shan; Shen, Baifei; Bu, Zhigang; Zhang, Xiaomei; Ji, Liangliang; Zhai, Shuhua, Axion-like particle generation in laser-plasma interaction, Phys. Scr., 97, 10, Article 105303 pp. (sep 2022)
[23] Arza, Ariel, Production of massive bosons from the decay of a massless particle beam, Phys. Rev. D, 105, Article 036004 pp. (2022)
[24] Drake, J. F.; Kaw, P. K.; Lee, Y. C.; Schmid, G.; Liu, C. S.; Rosenbluth, Marshall N., Parametric instabilities of electromagnetic waves in plasmas, Phys. Fluids, 17, 4, 778-785 (April 1974)
[25] Yoon, Jin Woo; Kim, Yeong Gyu; Choi, Il Woo; Sung, Jae Hee; Lee, Hwang Woon; Lee, Seong Ku; Nam, Chang Hee, Realization of laser intensity over 10^23 W/cm^2, Optica, 8, 5, 630-635 (May 2021)
[26] Danson, Colin N.; Haefner, Constantin; Bromage, Jake; Butcher, Thomas; Chanteloup, Jean-Christophe F.; Chowdhury, Enam A.; Galvanauskas, Almantas; Gizzi, Leonida A.; Hein, Joachim; Hillier, David I., Petawatt and exawatt class lasers worldwide, High Power Laser Sci. Eng., 7, 54 (2019)
[27] Shalloo, R. J.; Arran, C.; Picksley, A.; von Boetticher, A.; Corner, L.; Holloway, J.; Hine, G.; Jonnerby, J.; Milchberg, H. M.; Thornton, C.; Walczak, R.; Hooker, S. M., Low-density hydrodynamic optical-field-ionized plasma channels generated with an axicon lens, Phys. Rev. Accel. Beams, 22, 4, Article 041302 pp. (April 2019)
[28] Picksley, A., Meter-scale, conditioned hydrodynamic optical-field-ionized plasma channels, Phys. Rev. E, 102, 5, Article 053201 pp. (2020)
[29] Ehret, Klaus, New ALPS results on hidden-sector lightweights, Phys. Lett. B, 689, 149-155 (2010)
[30] Ballou, R., New exclusion limits on scalar and pseudoscalar axionlike particles from light shining through a wall, Phys. Rev. D, 92, 9, Article 092002 pp. (2015)
[31] Ouellet, Jonathan L., First results from ABRACADABRA-10 cm: a search for sub- μeV axion dark matter, Phys. Rev. Lett., 122, 12, Article 121802 pp. (2019)
[32] Anastassopoulos, V.; Aune, S.; Barth, K.; Belov, A.; Bräuninger, H.; Cantatore, Giovanni; Carmona, J. M.; Castel, J. F.; Cetin, S. A.; Christensen, F., New cast limit on the axion-photon interaction, Nat. Phys., 13, 6, 584 (2017)
[33] Reynolds, Christopher S.; Marsh, M. C. David; Russell, Helen R.; Fabian, Andrew C.; Smith, Robyn; Tombesi, Francesco; Veilleux, Sylvain, Astrophysical limits on very light axion-like particles from Chandra grating spectroscopy of NGC 1275, Astrophys. J., 890, 59 (2020)
[34] Payez, Alexandre; Evoli, Carmelo; Fischer, Tobias; Giannotti, Maurizio; Mirizzi, Alessandro; Ringwald, Andreas, Revisiting the SN1987A gamma-ray limit on ultralight axion-like particles, J. Cosmol. Astropart. Phys., 02, Article 006 pp. (2015)
[35] Ajello, M., Search for spectral irregularities due to photon-axionlike-particle oscillations with the Fermi large area telescope, Phys. Rev. Lett., 116, 16, Article 161101 pp. (2016)
[36] Beznogov, Mikhail V.; Rrapaj, Ermal; Page, Dany; Reddy, Sanjay, Constraints on axion-like particles and nucleon pairing in dense matter from the hot neutron star in HESS J1731-347, Phys. Rev. C, 98, 3, Article 035802 pp. (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.