×

Explosive dispersal of granular media. (English) Zbl 1536.76143

Summary: Explosive dispersal of granular media widely occurs in nature across various length scales, also enabling engineering applications ranging from commercial or military explosive systems to the loss prevention industry. However, the complex particle-flow coupling makes the explosive dispersal behaviour of particles difficult to control or even characterize. Here, we study the central explosion-driven dispersal of dense particle layers using the coarse-grained computational fluid dynamics-discrete element method and present a comprehensive investigation of both macroscale dispersal behaviours and particle-scale pattern formation. Employing three independent dimensionless parameters that characterize the efficiency, homogeneity and completeness of explosive dispersal, we categorize the dispersal behaviours into ideal, partial, retarded and failed modes, and propose the corresponding thresholds. As the mass ratio of granular materials to central pressurized gases (\(M/C\)) spans four orders of magnitude, the dispersal mode transitions from ideal to partial, then to retarded and finally to failed mode. The transitions of dispersal modes correspond to the particle-flow coupling regime crossovers, which change from decoupling to weak, medium and finally to strong coupling as the dispersal mode undergoes corresponding transitions. We proceed to develop continuum models accounting for the shock compaction and the ensuing pulsation of the particle ring that are capable of identifying the ideal dispersal mode from various dispersal systems. We also provide insights into the origins of diverse particle-scale patterns that are strongly correlated with macroscale dispersal modes and critical for the accurate prediction of dispersal modes.

MSC:

76T25 Granular flows
76L05 Shock waves and blast waves in fluid mechanics
76M99 Basic methods in fluid mechanics
Full Text: DOI

References:

[1] Aglitskiy, Y., Velikovich, A.L., Karasik, M., Metzler, N. & Obenschain, S.P.2010Basic hydrodynamics of Richtmyer-Meshkov-type growth and oscillations in the ICF-relevant conditions. Phil. Trans. R. Soc. A Math. Phys. Engng Sci.368, 1739-1768.
[2] Baer, M.R. & Nunziato, J.W.1986A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials. Intl J. Multiphase Flow12, 861-889. · Zbl 0609.76114
[3] Bai, C.H., Wang, Y., Xue, K. & Wang, L.F.2018Experimental study of detonation of large-scale powder-droplet-vapor mixtures. Shock Waves. 28, 599-611.
[4] Borchardt-Ott, W.2012Crystallography - An Introduction, 3rd edn. Springer.
[5] Britan, A. & Ben-Dor, G.2006Shock tube study of the dynamical behavior of granular materials. Intl J. Multiphase Flow32, 623-642. · Zbl 1136.76472
[6] Carmouze, Q., Saurel, R., Chiapolino, A. & Lapebie, E.2019Riemann solver with internal reconstruction (RSIR) for compressible single-phase and non-equilibrium two-phase flows. J. Comput. Phys.408, 109176. · Zbl 07505596
[7] Chiapolino, A. & Saurel, R.2019Numerical investigations of two-phase finger-like instabilities. Comput. Fluids206, 104585. · Zbl 1519.76331
[8] Clark, A.H., Petersen, A.J., Kondic, L. & Behringer, R.P.2015 Nonlinear force propagation during granular impact. Phys. Rev. Lett.114 (14), 144502.
[9] Crowl, D.A.2003Understanding Explosions. Wiley.
[10] Eckhoff, R.K.2009Dust explosion prevention and mitigation, status and developments in basic knowledge and in practical application. Intl J. Chem. Engng2009, 1-12.
[11] Felice, R.D.1994The voidage function for fluid-particle interaction systems. Intl J. Multiphase Flow20, 153-159. · Zbl 1134.76530
[12] Fernandez-Godino, M.G., Ouellet, F., Haftka, R.T. & Balachandar, S.2019Early time evolution of circumferential perturbation of initial particle volume fraction in explosive cylindrical multiphase dispersion. J. Fluids Engng141 (9), 091302.
[13] Formenti, Y., Druitt, T. & Kelfoun, K.2003Characterisation of the 1997 Vulcanian explosions of Soufrière Hills Volcano, Montserrat, by video analysis. Bull. Volcanol.65, 587-605.
[14] Frost, D.L.2018Heterogeneous/particle-laden blast waves. Shock Waves28, 439-449.
[15] Frost, D.L., Goroshin, S. & Zhang, F.2010 Jet formation during explosive particle dispersal. In International Symposium on Military Aspects of Blast and Shock.
[16] Frost, D.L., Grégoire, Y., Petel, O., Goroshin, S. & Zhang, F.2012Particle jet formation during explosive dispersal of solid particles. Phys. Fluids. 24, 091109.
[17] Han, P., Xue, K. & Bai, C.2021Explosively driven dynamic compaction of granular media. Phys. Fluids33, 023309.
[18] Huang, J.Y., Lu, L., Fan, D., Sun, T., Fezzaa, K., Xu, S.L., Zhu, M.H. & Luo, S.N.2016Heterogeneity in deformation of granular ceramics under dynamic loading. Scr. Materialia111, 114-118.
[19] Kandan, K., Khaderi, S.N., Wadley, H. & Deshpande, V.2017Surface instabilities in shock loaded granular media. J. Mech. Phys. Solids109, 217-240.
[20] Klemens, R., Gieras, M. & Kaluzny, M.2007Dynamics of dust explosions suppression by means of extinguishing powder in various industrial conditions. J. Loss Prev. Process. Ind.20, 664-674.
[21] Koneru, R.B., Rollin, B., Durant, B., Ouellet, F. & Balachandar, S.2020A numerical study of particle jetting in a dense particle bed driven by an air-blast. Phys. Fluids32, 093301.
[22] Kun, X., Kaiyuan, D., Xiaoliang, S., Yixiang, G. & Chunhua, B.2018Dual hierarchical particle jetting of a particle ring undergoing radial explosion. Soft Matt. 14, 4422-4431.
[23] Kuranz, C.C., et al.2018 How high energy fluxes may affect Rayleigh-Taylor instability growth in young supernova remnants. Nat. Commun.9, 1564.
[24] Li, J., Xue, K., Zeng, J., Tian, B. & Guo, X.2022Shock-induced interfacial instabilities of granular media. J. Fluid Mech.930, A22. · Zbl 1508.76045
[25] Liu, X.D., Osher, S. & Chan, T.1994Weighted essentially non-oscillatory schemes. J. Comput. Phys.115, 200-212. · Zbl 0811.65076
[26] Loiseau, J., Pontalier, Q., Milne, A.M., Goroshin, S. & Frost, D.L.2018Terminal velocity of liquids and granular materials dispersed by a high explosive. Shock Waves28, 473-487.
[27] Majmudar, T. & Behringer, R.2005Contact force measurements and stress-induced anisotropy in granular materials. Nature435, 1079-1082.
[28] Marjanovic, G., Hackl, J., Shringarpure, M., Annamalai, S. & Balachandar, S.2018Inviscid simulations of expansion waves propagating into structured particle beds at low volume fractions. Phys. Rev. Fluids3, 094301.
[29] Milne, A.M., Floyd, E., Longbottom, A.W. & Taylor, P.2014Dynamic fragmentation of powders in spherical geometry. Shock Waves24, 501-513.
[30] Mo, H., Lien, F.S., Zhang, F. & Cronin, D.S.2019A mesoscale study on explosively dispersed granular material using direct simulation. J. Appl. Phys.125, 214302.
[31] Morrison, F.A.1970Transient gas flow in a porous column. Ind. Engng Chem. Fundam.11, 191-197.
[32] Osnes, A.N., Vartdal, M. & Reif, B.P.2017Numerical simulation of particle jet formation induced by shock wave acceleration in a Hele-Shaw cell. Shock Waves28, 451-461.
[33] Pontalier, Q., Loiseau, J., Goroshin, S. & Frost, D.L.2018Experimental investigation of blast mitigation and particle-blast interaction during the explosive dispersal of particles and liquids. Shock Waves. 28, 489-511.
[34] Posey, J.W., Roque, B., Guhathakurta, S. & Houim, R.W.2021Mechanisms of prompt and delayed ignition and combustion of explosively dispersed aluminum powder. Phys. Fluids33, 113308.
[35] Richard, S., Favrie, N., Petitpas, F., Lallemand, M.-H. & Gavrilyuk, S.L.2010Modelling dynamic and irreversible powder compaction. J. Fluid Mech.664, 348-396. · Zbl 1221.76202
[36] Rodriguez, V., Saurel, R., Jourdan, G. & Houas, L.2013Solid-particle jet formation under shock-wave acceleration. Phys. Rev. E88, 063011.
[37] Rodriguez, V., Saurel, R., Jourdan, G. & Houas, L.2014External front instabilities induced by a shocked particle ring. Phys. Rev. E90, 043013.
[38] Rogue, X., Rodriguez, G., Haas, J.F. & Saurel, R.1998Experimental and numerical investigation of the shock-induced fluidization of a particles bed. Shock Waves8, 29-45. · Zbl 0899.76024
[39] Sundaresan, S., Ozel, A. & Kolehmainen, J.2018Toward constitutive models for momentum, species, and energy transport in gas-particle flows. Annu. Rev. Chem. Biomol. Engng9, 61-81.
[40] Tadanaga, T., Clark, A.H., Majmudar, T. & Kondic, L.2018Granular response to impact: topology of the force networks. Phys. Rev. E97, 012906.
[41] Tian, B., Zeng, J., Meng, B., Chen, Q. & Xue, K.2020Compressible multiphase particle-in-cell method (CMP-PIC) for full pattern flows of gas-particle system. J. Comput. Phys.418, 109602. · Zbl 07506167
[42] Wang, S., Gui, Q., Zhang, J., Gao, Y., Xu, J. & Jia, X.2021Theoretical and experimental study of bubble dynamics in underwater explosions. Phys. Fluids33, 126113.
[43] Xu, T., Lien, F.S., Ji, H. & Zhang, F.2013Formation of particle jetting in a cylindrical shock tube. Shock Waves23, 619-634.
[44] Xue, K., Cui, H., Du, K., Shi, X., Gan, Y. & Bai, C.2018The onset of shock-induced particle jetting. Powder Technol.336, 220-229.
[45] Xue, K., Sun, L. & Bai, C.2016Formation mechanism of shock-induced particle jetting. Phys. Rev. E94, 022903.
[46] Zhang, F., Ripley, R.C., Yoshinaka, A., Findlay, C.R., Anderson, J. & Rosen, B.V.2015Large-scale spray detonation and related particle jetting instability phenomenon. Shock Waves25, 239-254.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.