×

Two reliable methods for the solution of fractional coupled Burgers’ equation arising as a model of polydispersive sedimentation. (English) Zbl 1524.35699

Summary: In this article, we attain new analytical solution sets for nonlinear time-fractional coupled Burgers’ equations which arise in polydispersive sedimentation in shallow water waves using exp-function method. Then we apply a semi-analytical method namely perturbation-iteration algorithm (PIA) to obtain some approximate solutions. These results are compared with obtained exact solutions by tables and surface plots. The fractional derivatives are evaluated in the conformable sense. The findings reveal that both methods are very effective and dependable for solving partial fractional differential equations.

MSC:

35R11 Fractional partial differential equations
35A20 Analyticity in context of PDEs
35C05 Solutions to PDEs in closed form
Full Text: DOI

References:

[1] Abdeljawad, T. (2015). On conformable fractional calculus. Journal of computational and Applied Mathematics, 279, 57-66. · Zbl 1304.26004
[2] Abdulaziz, O., Hashim, I., & Momani, S. (2008). Application of homotopy-perturbation method to fractional IVPs. Journal of Computational and Applied Mathematics, 216(2), 574-584. · Zbl 1142.65104
[3] Aksoy, Y., & Pakdemirli, M. (2010). New perturbation-iteration solutions for Bratu-type equations. Computers & Mathematics with Applications, 59(8), 2802-2808. · Zbl 1193.34015
[4] Aksoy, Y., Pakdemirli, M., Abbasbandy, S., & Boyaci, H. (2012). New perturbation-iteration solutions for nonlinear heat transfer equations. International Journal of Numerical Methods for Heat & Fluid Flow, 22(7), 814-828.
[5] Alagoz, B. B., Yeroglu, C., Senol, B., & Ates, A. (2015). Probabilistic robust stabilization of fractional order systems with interval uncertainty. ISA transactions, 57, 101-110.
[6] Alquran, M., Jaradat, H. M., & Syam, M. I. (2017). Analytical solution of the time-fractional Phi-4 equation by using modified residual power series method. Nonlinear Dynamics, 90(4), 2525-2529. · Zbl 1394.35541
[7] Alquran, M. (2015). Analytical solution of time-fractional two-component evolutionary system of order 2 by residual power series method. J. Appl. Anal. Comput, 5(4), 589-599. · Zbl 1447.35111
[8] Atangana, A., Baleanu, D., & Alsaedi, A. (2015). New properties of conformable derivative. Open Mathematics, 13(1). · Zbl 1354.26008
[9] Atangana, A., & Alkahtani, B. S. T. (2015). Extension of the resistance, inductance, capacitance electrical circuit to fractional derivative without singular kernel. Advances in Mechanical Engineering, 7(6), 1-6.
[10] Caputo, M. (1967). Linear models of dissipation whose Q is almost frequency independent-II. Geophysical Journal International, 13(5), 529-539.
[11] Choudhary, A., Kumar, D., & Singh, J. (2016). A fractional model of fluid flow through porous media with mean capillary pressure. Journal of the Association of Arab Universities for Basic and Applied Sciences, 21(1), 59-63.
[12] Das, S. (2011). Functional fractional calculus. Springer Science& Business Media. · Zbl 1225.26007
[13] Diethelm, K. (2010). The analysis of fractional differential equations: An application-oriented exposition using differential operators of Caputo type. Springer Science & Business Media. · Zbl 1215.34001
[14] Ganji, Z. Z., Ganji, D. D., Jafari, H., & Rostamian, M. (2008). Application of the homotopy perturbation method to coupled system of partial differential equations with time fractional derivatives. Topological Methods in Nonlinear Analysis, 31(2), 341-348. · Zbl 1163.35312
[15] He, J. H., & Wu, X. H. (2006). Exp-function method for nonlinear wave equations. Chaos, Solitons & Fractals, 30(3), 700-708. · Zbl 1141.35448
[16] Khalil, R., Al Horani, M., Yousef, A., & Sababheh, M. (2014). A new definition of fractional derivative. Journal of Computational and Applied Mathematics, 264, 65-70. · Zbl 1297.26013
[17] Kumar, S., Saxena, R., & Singh, K. (2017). Fractional Fourier transform and fractional-order calculus-based image edge detection. Circuits, Systems, and Signal Processing, 36(4), 1493-1513.
[18] Kurt, A., Tasbozan, O., & Cenesiz, Y. (2016). Homotopy analysis method for conformable Burgers-Korteweg-de Vries equation. Bull. Math. Sci. Appl, 17, 17-23.
[19] Kurt, A., Tasbozan, O., & Baleanu, D. (2017). New solutions for conformable fractional Nizhnik-Novikov-Veselov system via G‵/G expansion method and homotopy analysis methods. Optical and Quantum Electronics, 49(10), 333.
[20] Magin, R. L. (2010). Fractional calculus models of complex dynamics in biological tissues. Computers & Mathematics with Applications, 59(5), 1586-1593. · Zbl 1189.92007
[21] Momani, S., & Odibat, Z. (2007). Numerical approach to differential equations of fractional order. Journal of Computational and Applied Mathematics, 207(1), 96-110. · Zbl 1119.65127
[22] Neamaty, A., Agheli, B., & Darzi, R. (2015). Variational iteration method and He’s polynomials for time fractional partial differential equations. Progress in Fractional Differentiation and Applications, 1(1), 47-55. · Zbl 1382.65354
[23] Ray, S. S., & Bera, R. K. (2006). Analytical solution of a fractional diffusion equation by Adomian decomposition method. Applied Mathematics and Computation, 174(1), 329-336. · Zbl 1089.65108
[24] Ray, S.S. (2014). A New Coupled Fractional Reduced Differential Transform Method for the Numerical Solutions of (2+1)-Dimensional Time Fractional Coupled Burger Equations, Modelling and Simulation in Engineering, vol. 2014.
[25] Sasso, M., Palmieri, G., & Amodio, D. (2011). Application of fractional derivative models in linear viscoelastic problems. Mechanics of Time-Dependent Materials, 15(4), 367-387.
[26] Secer, A., & Altun, S. (2018). A New Operational Matrix of Fractional Derivatives to Solve Systems of Fractional Differential Equations via Legendre Wavelets. Mathematics, 6(11), 238. · Zbl 1417.65146
[27] şenol, M., & Dolapci, I. T. (2016). On the Perturbation-Iteration Algorithm for fractional differential equations. Journal of King Saud University-Science, 28(1), 69-74.
[28] şenol, M., & Kasmaei, H.D. (2017). On the numerical solution of nonlinear fractional-integro differential equations, New Trends in Mathematical Sciences, 5, 118-127.
[29] şenol, M., & Kasmaei, H. D. (2017). Perturbation-Iteration Algorithm for Systems of Fractional Differential Equations and Convergence Analysis. Progress in Fractional Differentiation and Applications, 4, 271-279.
[30] Tasbozan, O., Cenesiz, Y., Kurt, A., & Baleanu, D. (2017). New analytical solutions for conformable fractional PDEs arising in mathematical physics by exp-function method. Open Physics, 15(1), 647-651.
[31] Zhou, Q., Kumar, D., Mirzazadeh, M., Eslami, M., Rezazadeh, H. (2018). Optical Soliton in Nonlocal Nonlinear Medium with Cubic-Quintic Nonlinearities and Spatio-Temporal Dispersion. Acta Physica Polonica A, 134(6), 1204- 1210.
[32] Tariq, K. U., Younis, M., Rezazadeh, H., Rizvi, S. T. R., Osman, M. S. (2018). Optical solitons with quadratic \(####\) ubic nonlinearity and fractional temporal evolution. Modern Physics Letters B, 32(26), 1850317.
[33] Osman, M. S., Rezazadeh, H., Eslami, M., Neirameh, A., Mirzazadeh, M. (2018). Analytical study of solitons to benjamin-bona-mahony-peregrine equation with power law nonlinearity by using three methods. University Politehnica of Bucharest Scientific Bulletin-Series A-Applied Mathematics and Physics, 80(4), 267-278. · Zbl 1438.35365
[34] Biswas, A., Al-Amr, M. O., Rezazadeh, H., Mirzazadeh, M., Eslami, M., Zhou, Q., Moshokoa S. P., Belic, M. (2018). Resonant optical solitons with dual-power law nonlinearity and fractional temporal evolution. Optik, 165, 233-239.
[35] Rezazadeh, H., Manafian, J., Khodadad, F. S., Nazari, F. (2018). Traveling wave solutions for density-dependent conformable fractional diffusio-reaction equation by the first integral method and the improved \(\begin{array}{}\displaystyle tan(\frac{1}{2}\varphi(\xi))\end{array} \)-expansion method. Optical and Quantum Electronics, 50(3), 121.
[36] Raza, N., Aslam, M. R., Rezazadeh, H. (2019). Analytical study of resonant optical solitons with variable coefficients in Kerr and non-Kerr law media. Optical and Quantum Electronics, 51(2), 59.
[37] Rezazadeh, H., Korkmaz, A., Eslami, M., Mirhosseini-Alizamini, S. M. (2019). A large family of optical solutions to Kundu-Eckhaus model by a new auxiliary equation method. Optical and Quantum Electronics, 51(3), 84.
[38] Biswas, A., Rezazadeh, H., Mirzazadeh, M., Eslami, M., Zhou, Q., Moshokoa, S. P., Belic, M. (2018). Optical solitons having weak non-local nonlinearity by two integration schemes. Optik, 164, 380-384.
[39] Rezazadeh, H., Mirzazadeh, M., Mirhosseini-Alizamini, S. M., Neirameh, A., Eslami, M., Zhou, Q. (2018). Optical solitons of Lakshmanan-Porsezian-Daniel model with a couple of nonlinearities. Optik, 164, 414-423.
[40] Yépez-Martínez, H., Rezazadeh, H., Souleymanou, A., Mukam, S. P. T., Eslami, M., Kuetche, V. K., Bekir, A. (2019). The extended modified method applied to optical solitons solutions in birefringent fibers with weak nonlocal nonlinearity and four wave mixing. Chinese Journal of Physics, 58, 137-150. · Zbl 07822240
[41] Rezazadeh, H., Mirhosseini-Alizamini, S. M., Eslami, M., Rezazadeh, M., Mirzazadeh, M., Abbagari, S. (2018). New optical solitons of nonlinear conformable fractional Schrödinger-Hirota equation. Optik, 172, 545-553.
[42] Rezazadeh, H. (2018). New solitons solutions of the complex Ginzburg-Landau equation with Kerr law nonlinearity. Optik, 167, 218-227.
[43] Rezazadeh, H., Tariq, H., Eslami, M., Mirzazadeh, M., Zhou, Q. (2018). New exact solutions of nonlinear conformable time-fractional Phi-4 equation. Chinese Journal of Physics, 56(6), 2805-2816. · Zbl 07822195
[44] Liu, J. G., Eslami, M., Rezazadeh, H., Mirzazadeh, M. (2018). Rational solutions and lump solutions to a nonisospectral and generalized variable-coefficient Kadomtsev-Petviashvili equation. Nonlinear Dynamics, 1-7.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.