×

The modified exponential function method for beta time fractional Biswas-Arshed equation. (English) Zbl 1532.81087

Summary: In this study, the exact solutions of the Biswas-Arshed equation with the beta time derivative, which has an important role and physically means that it represents the pulse propagation in an optical fiber, nuclear, and particle physics, are obtained using the modified exponential function method. Exact solutions consisting of hyperbolic, trigonometric, rational trigonometric, and rational function solutions demonstrate the competence and relevance of the proposed method. In addition, the physical properties of the obtained exact solutions are shown by making graphical representations according to different parameter values. It is seen that the method used is an effective technique, since these solution functions obtained with all these cases have periodic function properties.

MSC:

81V35 Nuclear physics
35Q41 Time-dependent Schrödinger equations and Dirac equations
78A50 Antennas, waveguides in optics and electromagnetic theory
33B10 Exponential and trigonometric functions
14D15 Formal methods and deformations in algebraic geometry
81Q80 Special quantum systems, such as solvable systems
65S05 Graphical methods in numerical analysis
03D45 Theory of numerations, effectively presented structures
35B10 Periodic solutions to PDEs

References:

[1] Yang, J.; Liu, A.; Liu, T., Forced oscillation of nonlinear fractional differential equations with damping term, Advances in Difference Equations, 2015, 1, 17 (2015) · Zbl 1350.34016 · doi:10.1186/s13662-014-0331-4
[2] Liu, C. S., A new trial equation method and its applications, Communications in Theoretical Physics, 45, 3, 395-397 (2006) · doi:10.1088/0253-6102/45/3/003
[3] Pandir, Y.; Gurefe, Y.; Misirli, E., The extended trial equation method for some time fractional differential equations, Discrete Dynamics in Nature and Society, 2013 (2013) · Zbl 1417.35222 · doi:10.1155/2013/491359
[4] Akbar, M. A.; Ali, N. H. M.; Zayed, E. M. E., Abundant exact traveling wave solutions of generalized Bretherton equation via improved (G’/G)-expansion method, Communications in Theoretical Physics, 57, 2, 173-178 (2012) · Zbl 1247.35069 · doi:10.1088/0253-6102/57/2/01
[5] Akbulut, A.; Kaplan, M.; Tascan, F., Conservation laws and exact solutions of Phi-four (Phi-4) equation via the (G’/G, 1/G)-expansion method, Zeitschrift für Naturforschung A, 71, 5, 439-446 (2016) · doi:10.1515/zna-2016-0010
[6] Abdou, M. A., The extended tanh method and its applications for solving nonlinear physical models, Applied Mathematics and Computation, 190, 1, 988-996 (2007) · Zbl 1123.65103 · doi:10.1016/j.amc.2007.01.070
[7] Ryabov, P. N.; Sinelshchikov, D. I.; Kochanov, M. B., Application of the Kudryashov method for finding exact solutions of the high order nonlinear evolution equations, Applied Mathematics and Computation, 218, 7, 3965-3972 (2011) · Zbl 1246.35015 · doi:10.1016/j.amc.2011.09.027
[8] Kaplan, M.; Bekir, A.; Akbulut, A., A generalized Kudryashov method to some nonlinear evolution equations in mathematical physics, Nonlinear Dynamics, 85, 4, 2843-2850 (2016) · doi:10.1007/s11071-016-2867-1
[9] Demiray, S. T.; Pandir, Y.; Bulut, H., Generalized Kudryashov method for time-fractional differential equations, Abstract and Applied Analysis, 2014 (2014) · Zbl 1474.35674 · doi:10.1155/2014/901540
[10] Akturk, T.; Gurefe, Y.; Pandir, Y., An application of the new function method to the Zhiber-Shabat equation, An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 7, 3, 271-274 (2017) · doi:10.11121/ijocta.01.2017.00488
[11] Elma, B.; Misirli, E., Two reliable techniques for solving conformable space-time fractional PHI-4 model arising in nuclear physics via β-derivative, Revista Mexicana de Física, 67, 5, article 050707 (2021)
[12] Yépez-Martínez, H.; Gómez-Aguilar, J. F.; Atangana, A., First integral method for non-linear differential equations with conformable derivative, Mathematical Modelling of Natural Phenomena, 13, 1, 22 (2018) · Zbl 1458.35463
[13] Arikoglu, A.; Ozkol, I., Solution of fractional differential equations by using differential transform method, Chaos, Solitons & Fractals, 34, 5, 1473-1481 (2007) · Zbl 1152.34306 · doi:10.1016/j.chaos.2006.09.004
[14] Batiha, B.; Noorani, M. S. M.; Hashim, I., Numerical solution of sine-Gordon equation by variational iteration method, Physics Letters A, 370, 5-6, 437-440 (2007) · Zbl 1209.65105 · doi:10.1016/j.physleta.2007.05.087
[15] Bekir, A.; Güner, Ö.; Cevikel, A. C., Fractional complex transform and exp-function methods for fractional differential equations, Abstract and Applied Analysis, 2013 (2013) · Zbl 1298.34008 · doi:10.1155/2013/426462
[16] Akbulut, A.; Kaplan, M.; Tascan, F., The investigation of exact solutions of nonlinear partial differential equations by using exp(−Φ(ξ)) method, Optik, 132, 382-387 (2017) · doi:10.1016/j.ijleo.2016.12.050
[17] Shawagfeh, N. T., Analytical approximate solutions for nonlinear fractional differential equations, Applied Mathematics and Computation, 131, 2-3, 517-529 (2002) · Zbl 1029.34003 · doi:10.1016/S0096-3003(01)00167-9
[18] Diethelm, K.; Ford, N. J., Analysis of fractional differential equations, Journal of Mathematical Analysis and Applications, 265, 2, 229-248 (2002) · Zbl 1014.34003 · doi:10.1006/jmaa.2000.7194
[19] Kumar, P.; Agrawal, O. P., An approximate method for numerical solution of fractional differential equations, Signal Processing, 86, 10, 2602-2610 (2006) · Zbl 1172.94436 · doi:10.1016/j.sigpro.2006.02.007
[20] Ford, N. J.; Simpson, A. C., The numerical solution of fractional differential equations: speed versus accuracy, Numerical Algorithms, 26, 4, 333-346 (2001) · Zbl 0976.65062 · doi:10.1023/A:1016601312158
[21] Atangana, A.; Akgul, A., On solutions of fractal fractional differential equations, Discrete & Continuous Dynamical Systems-S, 14, 10, 3441-3457 (2021) · Zbl 1481.34009 · doi:10.3934/dcdss.2020421
[22] Baleanu, D.; Mustafa, O. G.; Agarwal, R. P., On the solution set for a class of sequential fractional differential equations, Journal of Physics A: Mathematical and Theoretical, 43, 38, article 385209 (2010) · Zbl 1216.34004 · doi:10.1088/1751-8113/43/38/385209
[23] Syam, M. I.; Al-Refai, M., Fractional differential equations with Atangana-Baleanu fractional derivative: analysis and applications, Chaos, Solitons & Fractals, 2, article 100013 (2019) · doi:10.1016/j.csfx.2019.100013
[24] Atangana, A.; Koca, I., Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos, Solitons & Fractals, 89, 447-454 (2016) · Zbl 1360.34150 · doi:10.1016/j.chaos.2016.02.012
[25] Gurefe, N.; Kocer, E. G.; Gurefe, Y., Chebyshev-tau method for the linear Klein-Gordon equation, International Journal of Physical Sciences, 7, 43, 5723-5728 (2012)
[26] Abdeljawad, T., On conformable fractional calculus, Journal of Computational and Applied Mathematics, 279, 57-66 (2015) · Zbl 1304.26004 · doi:10.1016/j.cam.2014.10.016
[27] Pandir, Y.; Gurefe, Y.; Akturk, T., New soliton solutions of the nonlinear Radhakrishnan-Kundu-Lakshmanan equation with the beta-derivative, Optical and Quantum Electronics, 54, 4, 1-21 (2022) · doi:10.1007/s11082-022-03585-z
[28] Gurefe, Y.; Pandir, Y.; Akturk, T., On the nonlinear mathematical model representing the Coriolis effect, Mathematical Problems in Engineering, 2022 (2022) · doi:10.1155/2022/2504907
[29] Pandir, Y.; Duzgun, H. H., New exact solutions of the space-time fractional cubic Schrodinger equation using the new type F-expansion method, Waves in Random and Complex Media, 29, 3, 425-434 (2019) · Zbl 1505.35356 · doi:10.1080/17455030.2018.1449987
[30] Khalil, R.; Al Horani, M.; Yousef, A.; Sababheh, M., A new definition of fractional derivative, Journal of Computational and Applied Mathematics, 264, 65-70 (2014) · Zbl 1297.26013 · doi:10.1016/j.cam.2014.01.002
[31] Atangana, A.; Baleanu, D.; Alsaedi, A., New properties of conformable derivative, Open Mathematics, 13, 1, 889-898 (2015) · Zbl 1354.26008 · doi:10.1515/math-2015-0081
[32] Hosseini, K.; Mirzazadeh, M.; Ilie, M.; Gómez-Aguilar, J. F., Biswas-Arshed equation with the beta time derivative: optical solitons and other solutions, Optik-International Journal for Light and Electron Optics, 217, article 164801 (2020) · doi:10.1016/j.ijleo.2020.164801
[33] Han, T.; Li, Z.; Yuan, J., Optical solitons and single traveling wave solutions of Biswas-Arshed equation in birefringent fibers with the beta-time derivative, AIMS-Mathematics, 7, 8, 15282-15297 (2022) · doi:10.3934/math.2022837
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.