×

Unsteady flow in a dual-bell nozzle with displacement of an extendible section from the initial to working position. (English) Zbl 1509.76054

Summary: The use of extendible nozzles in propulsion systems is one potential way to increase the nozzle expansion ratio and the specific thrust. Numerical simulation of the supersonic turbulent flow of a viscous compressible gas in a dual-bell nozzle is considered. The displacement of the extendible section of the nozzle from the initial to the working position is taken into account. Numerical calculations are based on the Reynolds-averaged Navier-Stokes equations and equations of the SST turbulence model and sliding meshes. The unsteady structure of the flow formed when the nozzle is restored to service, and the topological features of the flow and relationships between flow quantities are studied. A variation of the force applied to the nozzle walls when the reactive jet flows out is discussed.

MSC:

76J20 Supersonic flows
76F50 Compressibility effects in turbulence
76N06 Compressible Navier-Stokes equations
76M12 Finite volume methods applied to problems in fluid mechanics
Full Text: DOI

References:

[1] Koroteev, A. S., Gazodinamicheskie i teplofizicheskie protsessy v raketnykh dvigatelyakh tverdogo topliva (Gas Dynamic and Thermal Physical Processes in Solid-Propellant Rocket Engines) (2004), Moscow: Mashinostroenie, Moscow
[2] Lavrov, L. N., Konstruktsii raketnykh dvigatelei na tverdom toplive (Structures of Solid-Propellant Rocket Engines) (1993), Moscow: Mashinostroenie, Moscow
[3] Hagemann, G., Immich, H., Nguyen, T.V., and Dumnov, G.E., Advanced rocket nozzles, J. Propul. Power, 1998, vol. 14, no. 5, рр. 620-633.
[4] Ellis, R.A. and Berdoyes, M., An example of successful international cooperation in rocket motor technology, Acta Astron., 2002, vol. 51, no. 1-9, pp. 47-56.
[5] Lacoste, M., Lacombe, A., Joyez, P., Ellis, R.A., Lee, J.C., and Payne, F.M., Carbon-carbon extendible nozzles, Acta Astron., 2002, vol. 50, no. 6, рр. 357-367.
[6] Shishkov, A.A., Panin, S.D., and Rumyantsev, B.V., Rabochie protsessy v RDTT (Operating Processes in Solid-Propellant Rocket Engine), Moscow: Mashinostroenie, 1989.
[7] Ivanov, I. E.; Kryukov, I. A., Numerical research for turbulent flows with limited and free separation in profiled nozzles, Vestn. Mosk. Aviats. Inst., 16, 23-30 (2009)
[8] Glushko, G. S.; Ivanov, I. E.; Kryukov, I. A., Numerical simulation of separated flow in nozzles, Fiz.-, Khim. Kinet. Gaz. Din., 9, 1-8 (2010)
[9] Verma, S. B.; Haidn, O., Unsteady shock motions in an over-expanded parabolic rocket nozzle, Aerospace Sci. Technol., 39, 48-71 (2014) · doi:10.1016/j.ast.2014.08.003
[10] Hagemann, G.; Frey, M.; Koschel, W., Appearance of restricted shock separation in rocket nozzles, J. Propul. Power, 18, 577-584 (2002) · doi:10.2514/2.5971
[11] Hunter, C.A., Experimental, theoretical, and computational investigation of separated nozzle flows, Proc. 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibition, Cleveland, 1998, paper no. 98-3107.
[12] Aliev, A.V. and Mironov, A.N., The way to simulate gas dynamic processes in nonsymmetrical nozzle blocks, Izv. Ross. Akad. Raketnykh Artilleriisk. Nauk, 2013, no. 3, pp. 40-45.
[13] Genin, C.; Stark, R.; Haidn, O.; Quering, K.; Frey, M., Experimental and numerical study of dual bell nozzle flow, Progr. Flight Phys., 5, 363-376 (2013) · doi:10.1051/eucass/201305363
[14] Arora, R.; Vaidyanathan, A., Experimental investigation of flow through planar double divergent nozzles, Acta Astron., 112, 200-216 (2015) · doi:10.1016/j.actaastro.2015.03.020
[15] Sreenath, K. R.; Mubarak, A. K., Design and analysis of contour bell nozzle and comparison with dual bell nozzle, Int. J. Res. Eng., 3, 52-56 (2016)
[16] Narayan, A.; Panneerselvam, S., Study of the effect of over-expansion factor on the flow transition in dual bell nozzles, Int. J. Mech., Aerospace, Ind., Mechatron. Manuf. Eng., 6, 1591-1595 (2012)
[17] Nasuti, F.; Onofri, M.; Martelli, E., Role of wall shape on the transition in axisymmetric dual-bell nozzles, J. Propul. Power, 21, 243-250 (2005) · doi:10.2514/1.6524
[18] Wong, H. and Schwane, R., Numerical investigation of transition in flow separation in a dual-bell nozzle, Proc. 4th Symp. on Aerothermodynamics for Space Vehicles, Oct. 15-18,2001, Capua: European Space Agency, 2002, pp. 425-432.
[19] Taylor, N., Steelant, J., and Bond, R., Experimental comparison of dual bell and expansion deflection nozzles, Proc. 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. & Exhibition, San Diego, 2011, paper no. 2011-5688.
[20] Perigo, D., Schwane, R., and Wong, H., A numerical comparison of the flow in conventional and dual bell nozzles in the presence of an unsteady external pressure environment, Proc. 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibition, Huntsville, July 20-23, 2003, paper no. 2003-4731.
[21] Stark, R., Genin, C., Wagner, B., and Koschel, W., The altitude adaptive dual bell nozzle, Proc. 16th Int. Conf. on the Methods of Aerophysical Research (ICMAR 2012), Kazan, Aug. 20-26, 2012.
[22] Martelli, E.; Nasuti, F.; Onofri, M., Numerical parametric analysis of dual-bell nozzle flows, AIAA J., 45, 640-650 (2007) · doi:10.2514/1.26690
[23] Kochetkov, A.O., Efficiency of multinozzle scheme for rocket booster with non-round non-axisymmetric nozzles, Izv. Vyssh. Uchebn. Zav. Aviats. Tekhn., 2009, no. 3, pp. 67-69.
[24] Raketno-kosmicheskaya korporatsiya “Energiya” imeni S.P. Koroleva na rubezhe dvukh vekov (S.P. Korolev Rocket and Space Corporation Energia on the Edge of Two Centuries), Semenov, Yu.P., Ed., Korolev: S.P. Korolev Rocket and Space Corporation Energia, 2001.
[25] Volkov, K. N., The way to discrete Navier-Stokes equations at movable nonstructured grids, Vychisl. Metody Program., 9, 256-273 (2008)
[26] Savel’ev, S.K., Emel’yanov, V.N., and Benderskii, B.Ya., Eksperimental’nye metody issledovaniya gazodinamiki RDTT (Experimental Methods for Researching Gas Dynamic Processes in Solid-Propellant Rocket Engine), St. Petersburg: Nedra, 2007.
[27] Volkov, K. N.; Emel’yanov, V. N.; Yakovchuk, M. S., Numerical simulation of the interaction of a transverse jet with a supersonic flow using different turbulence models, J. Appl. Mech. Tech. Phys., 56, 789-799 (2015) · doi:10.1134/S0021894415050053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.