×

Spatial and temporal instabilities of optical discharges. (English) Zbl 1509.76036

Summary: By now technologies, employing optical discharges find ever expanding applications in metering and diagnostic equipment in science, engineering and medicine. Based on the original experimental results authors look into some manifestations of spatial and temporal instabilities of the continuous and periodic pulse optical discharges (COD, POD). Set of the phenomena considered makes a great impact on a performance of laser produced plasmas essential for many applications, such as high brightness broadband light sources, for instance. Performance instability of continuous optical discharges followed by laser beam refraction on the refraction index gradients exhibit themselves first in spatial inhomogeneity of plasma thermal radiation luminosity and the other parameters related. Spatial inhomogeneity is accompanied by temporal instability of the plasma. The paper reports criteria for the appearance of instabilities related to the refraction followed by the limitations on supporting of elongated plasma. One of the main reasons of temporal instabilities of COD is thermal gravity convection. Instability of a heated gas zone surrounding optical discharge is followed by regular self-sustained oscillations leading in turn to pulsing of brightness and position of radiated plasma. Simple physical model proposed gives estimations correspondent to the observed pulse frequency dependence on gas pressure. In the case of periodic pulse optical discharges forced convection may be put forward as one of the main discharge instability reasons. Pulse optical discharge induces convective flows due to asymmetrical gas expanding following gasdynamic effect of the energy release zone shape determined by laser beam focusing system configuration.

MSC:

76E25 Stability and instability of magnetohydrodynamic and electrohydrodynamic flows
76E06 Convection in hydrodynamic stability
76X05 Ionized gas flow in electromagnetic fields; plasmic flow
78A60 Lasers, masers, optical bistability, nonlinear optics
Full Text: DOI

References:

[1] Smith, D.K., US Patent #7435982, 2008; #8309943, 2012.
[2] Bezel, I., Delgado, G., Derstine, M., Gross, K., Solarz, R., Shchemelinin, A., and Shortt, D., High power laser-sustained plasma light sources for KLA-Tencor broadband inspection tools, Proc. CLEO: Applications and Technology 2015, San Jose, May 10-15, 2015, paper no. ATu4M.2. doi:10.1364/CLEO_AT.2015.ATu4M.2.
[3] Su, M.N. and Lin, J.J.M., Note: a transient absorption spectrometer using an ultra bright laser-driven light source, Rev. Sci. Instrum., 2013, vol. 84, p. 086106. doi:10.1063/1.4818977
[4] Kuznetsov, V.A., Solovyov, N.G., Shilov, A.O., Yakimov, M.Yu., and Zimakov, V.P., Bistable behavior of a continuous optical discharge as a laser beam propagation effect, Proc. SPIE-Int.Soc. Opt. Eng., 2013, vol. 8600, p. 860002. doi:10.1117/12.2003658
[5] Antsiferov, P.S., Koshelev, K.N., Krivtsun, V.M., and Lash, A.A., US Patent #9357627 B2, 2016.
[6] Rudoy, I.G., Solovyov, N.G., Soroka, A.M., and Yakimov, M.Yu., Russian Patent #2571433, 2015.
[7] Heins, A. M.; Guo, Chunlei, High stability breakdown of noblegases with femtosecond laser pulses, Opt. Lett., 37, 599-601 (2012) · doi:10.1364/OL.37.000599
[8] Zimakov, V.P., Kuznetsov, V.A., Lavrentyev, S.Yu., Solovyov, N.G., Shemyakin, A.N., Shilov, A.O., and Yakimov, M.Yu., New application possibilities of optical discharges in aerophysical experiments, Phys.-Chem. Kinet. Gas Dyn., 2016, vol. 17, no. 2. http://chemphys.edu.ru/issues/2016-17-2/articles/653/.
[9] Generalov, N. A.; Zimakov, V. P.; Kozlov, G. I.; Masyukov, V. A.; Raizer, Yu. P., Experimental investigation of a continuous optical discharge, Sov. J. Exp. Theor. Phys., 34, 763 (1972)
[10] Gerasimenko, M. V.; Kozlov, G. I.; Kuznetsov, V. A., Mechanism for stabilization and oscillations of the plasma of a steady laser discharge, Sov. Tech. Phys. Lett., 6, 208-210 (1980)
[11] Generalov, N. A.; Zakharov, A. M.; Kosynkin, V. D.; Yakimov, M. Yu., Stability of a continuous optical discharge in atmospheric air flow, Combust., Explos. Shock Waves, 22, 214 (1986) · doi:10.1007/BF00749269
[12] Raizer, U. P.; Surzhikov, S. T., Thermo-gravitational convection in a continuous optical discharge, Fluid Dyn., 24, 593-598 (1989) · doi:10.1007/BF01052423
[13] Makhviladze, G. M.; Selezneva, I. K., The thermal stability of a stationary wave of an optical discharge, J. Appl. Mech. Tech. Phys., 22, 646-651 (1981) · doi:10.1007/BF00913713
[14] Mucha, Z.; Baranowski, A.; Peradzynski, Z., Instability of continuous optical discharge, Bull. Acad. Pol. Sci., 25, 361-367 (1977)
[15] Zimakov, V.P., Kuznetsov, V.A., Rudoy, I.G., Solovyov, N.G., Soroka, A.M., Shemyakin, A.N., Shilov, A.O., and Yakimov, M.Yu., Periodic-pulse and combined regimes of sustaining optical discharges, Phys.-Chem. Kinet. Gas Dyn., 2015, vol. 16, no. 2. http://chemphys.edu.ru/issues/2015-16-2/articles/548/.
[16] Tishchenko, V. N.; Grachev, G. N.; Pavlov, A. A.; Smirnov, A. L.; Pavlov, A. A.; Golubev, M. P., Gas-dynamic effects in the interaction of a motionless optical pulsating discharge with gas, Quant. Electron., 38, 82 (2008) · doi:10.1070/QE2008v038n01ABEH013601
[17] Bufetov, I. A.; Prokhorov, A. M.; Fedorov, V. B.; Fomin, V. K., Hydrodynamic relaxation of a hot-gas cloud following laser breakdown in air, Dokl. Akad. Nauk SSSR, 261, 586 (1981)
[18] Brieschenk, S.; O’Byrne, S.; Kleine, H., Visualization of jet development in laser-induced plasmas, Opt. Lett., 38, 664-666 (2013) · doi:10.1364/OL.38.000664
[19] Kojima, H.; Takahashi, E.; Furutani, H., Breakdown plasma and vortex flow control for laser ignition using a combination of nano- and femto-second lasers, Opt. Express, 22, A90-A98 (2014) · doi:10.1364/OE.22.000A90
[20] Zimakov, V.P., Solovyov, N.G., Shemyakin, A.N., Shilov, A.O., and Yakimov, M.Yu., Quasi-stationary plasma sustaining by means of periodic-pulsed laser radiation of pre-breakdown intensity, Phys.-Chem. Kinet. Gas Dyn., 2015, vol. 16, no. 4. http://chemphys.edu.ru/issues/2015-16-4/articles/584.
[21] Zimakov, V.P., Kuznetsov, V.A., Solovyov, N.G., Shemyakin, A.N., Shilov, A.O., and Yakimov, M.Yu., Quasi-stationary convection in a periodic-pulsed optical discharge in high pressure rare gas, IOP J. Phys.: Conf. Ser., 2017, vol. 815, p. 012003. doi:10.1088/1742-6596/815/1/012003
[22] Mainfray, G., Multiphoton ionization of atoms, J. Phys. Colloq., 46, 113-125 (1985) · doi:10.1051/jphyscol:1985111
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.