×

Schatten classes and commutators of Riesz transform on Heisenberg group and applications. (English) Zbl 07657578

The aim of this work is to investigate Schatten class estimates for commutators of Riesz transforms on Heisenberg groups. The findings presented in this paper pave the way for the study of Schatten classes for commutators with certain Calderón-Zygmund operators in other important settings beyond \(\mathbb{R}^{n}.\)

MSC:

47B10 Linear operators belonging to operator ideals (nuclear, \(p\)-summing, in the Schatten-von Neumann classes, etc.)
42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
43A85 Harmonic analysis on homogeneous spaces

References:

[1] Aleksandrov, AB; Peller, VV, Schur multipliers of Schatten von-Neumann classes \(S_p\), J. Funct. Anal., 279, 108683 (2020) · Zbl 07235746 · doi:10.1016/j.jfa.2020.108683
[2] Arazy, J.; Fisher, SD; Peetre, J., Hankel operators on weighted Bergman spaces, Am. J. Math., 110, 989-1053 (1988) · Zbl 0669.47017 · doi:10.2307/2374685
[3] Banũelos, R.; Wang, G., Sharp inequalities for martingales with applications to the Beurling-Ahlfors and Riesz transforms, Duke Math. J., 80, 575-600 (1995) · Zbl 0853.60040 · doi:10.1215/S0012-7094-95-08020-X
[4] Betancor, J.; Castro, A.; Curbelo, J., Harmonic analysis operators associated with multidimensional Bessel operators, Proc. R. Soc. Edinb. Sect. A, 142, 945-974 (2012) · Zbl 1257.42035 · doi:10.1017/S0308210511000643
[5] Bonfiglioli, A., Taylor formula for homogeneous groups and applications, Math. Z., 262, 255-279 (2009) · Zbl 1286.43009 · doi:10.1007/s00209-008-0372-z
[6] Bonfiglioli, A.; Lanconelli, E.; Uguzzoni, F., Stratified Lie Group and Potential Theory for their Sub-Laplacian (2007), Berlin: Springer, Berlin · Zbl 1128.43001
[7] Bruno, T.; Peloso, MM; Vallarino, M., Besov and Triebel-Lizorkin spaces on Lie groups, Math. Ann., 377, 335-377 (2020) · Zbl 1453.46025 · doi:10.1007/s00208-019-01927-z
[8] Chen, P.; Duong, X.; Li, J.; Wu, Q., Compactness of Riesz transform commutator on stratified Lie groups, J. Funct. Anal., 277, 6, 1639-1676 (2019) · Zbl 1423.43003 · doi:10.1016/j.jfa.2019.05.008
[9] Chen, P., Cowling, M.G., Lee, M.-Y., Li, J., Ottazzi, A.: Flag Hardy space theory on Heisenberg groups and applications. Preprint at http://arxiv.org/abs/2102.07371
[10] Coifman, R.; Rochberg, R.; Weiss, G., Factorization theorems for Hardy spaces in several variables, Ann. Math., 103, 611-635 (1976) · Zbl 0326.32011 · doi:10.2307/1970954
[11] Connes, A., Noncommutative Geometry (1994), San Diego: Academic Press Inc, San Diego · Zbl 0818.46076
[12] Duong, XT; Li, H-Q; Li, J.; Wick, BD, Lower bound of Riesz transform kernels and commutator theorems on stratified nilpotent Lie groups, J. Math. Pures Appl., 124, 273-299 (2019) · Zbl 1415.43002 · doi:10.1016/j.matpur.2018.06.012
[13] Duong, X.T., Li, H.-Q., Li, J., Wick, B.D., Wu, Q.: Lower bound of Riesz transform kernels revisited and commutators on stratified Lie groups. http://arxiv.org/abs/1803.01301
[14] Fang, Q.; Xia, J., Schatten class membership of Hankel operators on the unit sphere, J. Funct. Anal., 257, 10, 3082-3134 (2009) · Zbl 1178.47019 · doi:10.1016/j.jfa.2009.05.006
[15] Feldman, M.; Rochberg, R., Singular Value Estimates for Commutators and Hankel Operators on the Unit Ball and the Heisenberg Group Analysis and Partial Differential Equations, 121-159, Lecture Notes in Pure and Application Mathemathics (1990), New York: Dekker, New York · Zbl 0703.47020
[16] Feneuil, J., Algebra properties for Besov spaces on unimodular Lie groups, Colloq. Math., 154, 2, 205-240 (2018) · Zbl 1411.46030 · doi:10.4064/cm6649-12-2017
[17] Folland, GB; Stein, EM, Hardy Spaces on Homogeneous Groups (1982), Princeton: Princetion University Press, Princeton · Zbl 0508.42025
[18] Frank, R.L., Sukochev, F., Zanin, D.: Asymptotics of singular values for quantum derivatives, To appear in Trans. Am. Math. Soc · Zbl 1516.46046
[19] Gaveau, B., Principe de moindre action, propagation de la chaleur et estimées sous-elliptiques sur certains groupes nilpotents, Acta Math., 139, 95-153 (1977) · Zbl 0366.22010 · doi:10.1007/BF02392235
[20] Gilbarg, D.; Trudinger, NS, Elliptic Partial Differential Equations of Second Order. Classics in Mathematics (2001), Berlin: Springer, Berlin · Zbl 0361.35003 · doi:10.1007/978-3-642-61798-0
[21] Goffeng, M., Analytic formulas for the topological degree of non-smooth mappings: the odd-dimensional case, Adv. Math., 231, 357-377 (2012) · Zbl 1246.32034 · doi:10.1016/j.aim.2012.05.009
[22] Han, Y.; Yang, D., Some new spaces of Besov and Triebel-Lizorkin type on homogeneous spaces, Studia Math., 156, 67-97 (2003) · Zbl 1032.42025 · doi:10.4064/sm156-1-5
[23] Huber, A., On the uniqueness of generalized axially symmetric potentials, Ann. Math., 60, 351-358 (1954) · Zbl 0057.08802 · doi:10.2307/1969638
[24] Isralowitz, J., Schatten \(p\) class commutators on the weighted Bergman space \(L^2_a({\mathbb{B} }_n, d\nu_\gamma )\) for \(2n/(n+1+\gamma )<p<\infty \), Indiana Univ. Math. J., 62, 201-233 (2013) · Zbl 1286.47016 · doi:10.1512/iumj.2013.62.4767
[25] Janson, S.; Wolff, T., Schatten classes and commutators of singular integral operators, Ark. Mater., 20, 301-310 (1982) · Zbl 0508.42022 · doi:10.1007/BF02390515
[26] Journé, J-L, Calderón-Zygmund Operators, Pseudodifferential Operators and the Cauchy Integral of Calderón (1983), Berlin: Springer, Berlin · Zbl 0508.42021 · doi:10.1007/BFb0061458
[27] Journé, J-L, Calderón-Zygmund operators on product space, Rev. Mater. Iberoam., 1, 55-92 (1985) · Zbl 0634.42015 · doi:10.4171/RMI/15
[28] Kairema, A.; Li, J.; Pereyra, C.; Ward, LA, Haar bases on quasi-metric measure spaces, and dyadic structure theorems for function spaces on produce spaces of homogeneous type, J. Funct. Anal., 271, 1793-1843 (2016) · Zbl 1347.42040 · doi:10.1016/j.jfa.2016.05.002
[29] Li, J.; Wick, BD, Characterizations of \(H_{\Delta_N}^1({\mathbb{R} }^n)\) and \(BMO_{\Delta_N}({\mathbb{R} }^n)\) via weak factorizations and commutators, J. Funct. Anal., 272, 5384-5416 (2017) · Zbl 1366.42027 · doi:10.1016/j.jfa.2017.03.007
[30] Lord, S.; McDonald, E.; Sukochev, F.; Zanin, D., Quantum differentiability of essentially bounded functions on Euclidean space, J. Funct. Anal., 273, 7, 2353-2387 (2017) · Zbl 1385.46054 · doi:10.1016/j.jfa.2017.06.020
[31] Müller, D.; Yang, D., A difference characterization of Besov and Triebel-Lizorkin spaces on RD-spaces, Forum Math., 21, 256-298 (2009) · Zbl 1171.42013 · doi:10.1515/FORUM.2009.013
[32] Pau, J., Characterization of Schatten-class Hankel operators on weighted Bergman spaces, Duke Math. J., 165, 2771-2791 (2016) · Zbl 1393.47012 · doi:10.1215/00127094-3627310
[33] Peller, VV, Nuclearity of Hankel operators, Mat. Sbornik., 113, 538-581 (1980) · Zbl 0458.47022
[34] Peller, VV, Hankel Operators and Their Applications (2003), New York: Springer, New York · Zbl 1030.47002 · doi:10.1007/978-0-387-21681-2
[35] Petermichl, S.; Volberg, A., Heating of the Ahlfors-Beurling operator: weakly quasi-regular maps on the plane are quasiregular, Duke Math. J., 112, 281-305 (2002) · Zbl 1025.30018 · doi:10.1215/S0012-9074-02-11223-X
[36] Potapov, D.; Sukochev, F., Operator-Lipschitz functions in Schatten-von Neumann classes, Acta Math., 207, 375-389 (2011) · Zbl 1242.47013 · doi:10.1007/s11511-012-0072-8
[37] Pott, S.; Smith, MP, Paraproducts and Hankel operators of Schatten class via \(p-\) John-Nirenberg theorem, J. Funct. Anal., 217, 38-78 (2004) · Zbl 1089.47024 · doi:10.1016/j.jfa.2004.03.005
[38] Rochberg, R.; Semmes, S., A decomposition theorem for BMO and applications, J. Funct. Anal., 67, 228-263 (1986) · Zbl 0593.47027 · doi:10.1016/0022-1236(86)90038-8
[39] Rochberg, R.; Semmes, S., Nearly weakly orthonormal sequences, singular value estimates, and Calderon-Zygmund operators, J. Funct. Anal., 86, 237-306 (1989) · Zbl 0699.47012 · doi:10.1016/0022-1236(89)90054-2
[40] Russo, B., On the Hausdorff-Young theorem for integral operators, Pac. J. Math., 68, 241-253 (1977) · Zbl 0367.47028 · doi:10.2140/pjm.1977.68.241
[41] Stein, EM, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals (1993), Princeton: Princeton University Press, Princeton · Zbl 0821.42001
[42] Strichartz, RS, Self-similarity on Nilpotent Lie Groups: Generalized Convex Bodies and Generalized Envelopes. Contemp. Math. 140, 123-157 (1992), Providence: American Mathematical Society, Providence · Zbl 0797.43004
[43] Tyson, JT, Global conformal Assouad dimension in the Heisenberg group, Conf. Geom. Dynam., 12, 32-57 (2008) · Zbl 1133.30323 · doi:10.1090/S1088-4173-08-00177-X
[44] Uchiyama, A., On the compactness of operators of Hankel type, Tôhoku Math. J., 30, 163-171 (1978) · Zbl 0384.47023 · doi:10.2748/tmj/1178230105
[45] Varopoulos, NT; Saloff-Coste, L.; Coulhon, T., Analysis and Geometry on Groups, Cambridge Tracts in Mathematics, 100 (1992), Cambridge: Cambridge University, Cambridge · Zbl 0813.22003
[46] Wang, F.; Han, Y.; He, Z.; Yang, D., Besov and Triebel-Lizorkin spaces on spaces of homogeneous type with applications to boundedness of Calderš®n-Zygmund operators, Dissertationes Math., 565, 1-113 (2021) · Zbl 1489.46044
[47] Yang, D., Real interpolations for Besov and Triebel-Lizorkin spaces on spaces of homogeneous type, Math. Nachr., 273, 96-113 (2004) · Zbl 1069.46014 · doi:10.1002/mana.200310198
[48] Zhu, K., Schatten class Hankel operators on the Bergman space of the unit ball, Am. J. Math., 113, 147-167 (1991) · Zbl 0734.47017 · doi:10.2307/2374825
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.