×

Mathematical modeling and analysis of spatial neuron dynamics: dendritic integration and beyond. (English) Zbl 1530.92027

Summary: Neurons compute by integrating spatiotemporal excitatory (E) and inhibitory (I) synaptic inputs received from the dendrites. The investigation of dendritic integration is crucial for understanding neuronal information processing. Yet quantitative rules of dendritic integration and their mathematical modeling remain to be fully elucidated. Here neuronal dendritic integration is investigated by using theoretical and computational approaches. Based on the passive cable theory, a PDE-based cable neuron model with spatially branched dendritic structure is introduced to describe the neuronal subthreshold membrane potential dynamics, and the analytical solutions in response to conductance-based synaptic inputs are derived. Using the analytical solutions, a bilinear dendritic integration rule is identified, and it characterizes the change of somatic membrane potential when receiving multiple spatiotemporal synaptic inputs from the dendrites. In addition, the PDE-based cable neuron model is reduced to an ODE-based point-neuron model with the feature of bilinear dendritic integration inherited, thus providing an efficient computational framework of neuronal simulation incorporating certain important dendritic functions. The above results are further extended to active dendrites by numerical verification in realistic neuron simulations. Our work provides a comprehensive and systematic theoretical and computational framework for the study of spatial neuron dynamics.
© 2021 The Authors. Communications on Pure and Applied Mathematics published by Wiley Periodicals LLC.

MSC:

92C20 Neural biology
35Q92 PDEs in connection with biology, chemistry and other natural sciences

Software:

NEURON

References:

[1] Andrásfalvy, B. K.; Magee, J. C.Distance‐dependent increase in AMPA receptor number in the dendrites of adult hippocampal CA1 pyramidal neurons. The Journal of Neuroscience21 (2001), no. 23, 9151-9159. https://doi.org/10.1523/JNEUROSCI.21‐23‐09151.2001 · doi:10.1523/JNEUROSCI.21‐23‐09151.2001
[2] Atallah, B.; Scanziani, M.Instantaneous modulation of gamma oscillation frequency by balancing excitation with inhibition. Neuron62 (2009), no. 4, 566-577. https://doi.org/10.1016/j.neuron.2009.04.027 · doi:10.1016/j.neuron.2009.04.027
[3] Badel, L.; Lefort, S.; Brette, R.; Petersen, C. C.; Gerstner, W.; Richardson, M. J.Dynamic IV curves are reliable predictors of naturalistic pyramidal‐neuron voltage traces. Journal of Neurophysiology99 (2008), no. 2, 656-666. https://doi.org/10.1152/jn.01107.2007 · doi:10.1152/jn.01107.2007
[4] Behabadi, B. F.; Polsky, A.; Jadi, M.; Schiller, J.; Mel, B. W. Location‐dependent excitatory synaptic interactions in pyramidal neuron dendrites. PLoS Comput. Biol. 8 (2012), no. 7, e1002599. 10.1371/journal.pcbi.1002599
[5] Bracewell, R. N.The Fourier transform and its applications. Third edition. McGraw‐Hill Series in Electrical Engineering. Circuits and Systems. McGraw‐Hill, New York, 1986.
[6] Branco, T.; Clark, B. A.; Häusser, M.Dendritic discrimination of temporal input sequences in cortical neurons. Science329 (2010), no. 5999, 1671-1675. https://doi.org/10.1126/science.1189664 · doi:10.1126/science.1189664
[7] Cannon, R.; Turner, D.; Pyapali, G.; Wheal, H.An on‐line archive of reconstructed hippocampal neurons. Journal of Neuroscience Methods84 (1998), no. 1, 49-54. https://doi.org/10.1016/S0165‐0270(98)00091‐0 · doi:10.1016/S0165‐0270(98)00091‐0
[8] Carandini, M.; Mechler, F.; Leonard, C. S.; Movshon, J. A.Spike train encoding by regular‐spiking cells of the visual cortex. Journal of Neurophysiology76 (1996), no. 5, 3425-3441. https://doi.org/10.1152/jn.1996.76.5.3425 · doi:10.1152/jn.1996.76.5.3425
[9] Carnevale, N.; Hines, M.The NEURON book. Cambridge University Press, Cambridge, 2006.
[10] Cash, S.; Yuste, R.Input summation by cultured pyramidal neurons is linear and position‐independent. Journal of Neuroscience18 (1998), no. 1, 10-15. https://doi.org/10.1523/JNEUROSCI.18‐01‐00010.1998 · doi:10.1523/JNEUROSCI.18‐01‐00010.1998
[11] Cash, S.; Yuste, R.Linear summation of excitatory inputs by CA1 pyramidal neurons. Neuron22 (1999), no. 2, 383-394. https://doi.org/10.1016/S0896‐6273(00)81098‐3 · doi:10.1016/S0896‐6273(00)81098‐3
[12] Chacron, M. J.Nonlinear information processing in a model sensory system. Journal of Neurophysiology95 (2006), no. 5, 2933-2946. https://doi.org/10.1152/jn.01296.2005 · doi:10.1152/jn.01296.2005
[13] David, F.; Linster, C.; Cleland, T. A.Lateral dendritic shunt inhibition can regularize mitral cell spike patterning. Journal of Computational Neuroscience25 (2008), no. 1, 25-38. https://doi.org/10.1007/s10827‐007‐0063‐5 · Zbl 1412.92033 · doi:10.1007/s10827‐007‐0063‐5
[14] Dayan, P.; Abbott, L.Theoretical neuroscience: Computational and mathematical modeling of neural systems. MIT Press, Cambridge, Mass., 2001. · Zbl 1051.92010
[15] DeFelipe, J.; Fariñas, I.The pyramidal neuron of the cerebral cortex: morphological and chemical characteristics of the synaptic inputs. Progress in Neurobiology39 (1992), no. 6, 563-607. https://doi.org/10.1016/0301‐0082(92)90015‐7 · doi:10.1016/0301‐0082(92)90015‐7
[16] Destexhe, A.; Mainen, Z. F.; Sejnowski, T. J.An efficient method for computing synaptic conductances based on a kinetic model of receptor binding. Neural Computation6 (1994), no. 1, 14-18. https://doi.org/10.1162/neco.1994.6.1.14 · doi:10.1162/neco.1994.6.1.14
[17] Destexhe, A.; Mainen, Z. F.; Sejnowski, T. J.Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. Journal of Computational Neuroscience1 (1994), no. 3, 195-230. https://doi.org/10.1007/BF00961734 · doi:10.1007/BF00961734
[18] Destexhe, A.; Mainen, Z. F.; Sejnowski, T. J. Kinetic models of synaptic transmission. Methods in Neuronal Modeling2 (1998), 1-25.
[19] FitzHugh, R.Impulses and physiological states in theoretical models of nerve membrane. Biophysical Journal1 (1961), no. 6, 445-466. https://doi.org/10.1016/S0006‐3495(61)86902‐6 · doi:10.1016/S0006‐3495(61)86902‐6
[20] Fotowat, H.; Gabbiani, F.Collision detection as a model for sensory‐motor integration. Annual Review of Neuroscience34 (2011), 1-19. https://doi.org/10.1146/annurev‐neuro‐061010‐113632 · doi:10.1146/annurev‐neuro‐061010‐113632
[21] Gabbiani, F.; Krapp, H. G.; Koch, C.; Laurent, G.Multiplicative computation in a visual neuron sensitive to looming. Nature420 (2002), no. 6913, 320-324. https://doi.org/10.1038/nature01190 · doi:10.1038/nature01190
[22] Gidon, A.; Segev, I.Principles governing the operation of synaptic inhibition in dendrites. Neuron75 (2012), no. 2, 330-341. https://doi.org/10.1016/j.neuron.2012.05.015 · doi:10.1016/j.neuron.2012.05.015
[23] Grienberger, C.; Chen, X.; Konnerth, A.NMDA receptor‐dependent multidendrite Ca2+ spikes required for hippocampal burst firing in vivo. Neuron81 (2014), no. 6, 1274-1281. https://doi.org/10.1016/j.neuron.2014.01.014 · doi:10.1016/j.neuron.2014.01.014
[24] Hao, J.; Wang, X.; Dan, Y.; Poo, M.; Zhang, X.An arithmetic rule for spatial summation of excitatory and inhibitory inputs in pyramidal neurons. Proc. Natl. Acad. Sci. USA106 (2009), no. 51, 21906-21911. https://doi.org/10.1073/pnas.0912022106 · doi:10.1073/pnas.0912022106
[25] Häusser, M.; Roth, A.Estimating the time course of the excitatory synaptic conductance in neocortical pyramidal cells using a novel voltage jump method. Journal of Neuroscience17 (1997), no. 20, 7606-7625. https://doi.org/10.1523/JNEUROSCI.17‐20‐07606.1997 · doi:10.1523/JNEUROSCI.17‐20‐07606.1997
[26] Hodgkin, A. L.; Huxley, A. F.A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology117 (1952), no. 4, 500-544. https://doi.org/10.1113/jphysiol.1952.sp004764 · doi:10.1113/jphysiol.1952.sp004764
[27] Hoffman, D. A.; Magee, J. C.; Colbert, C. M.; Johnston, D.K^+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature387 (1997), no. 6636, 869-875.
[28] Holmes, W. R.A continuous cable method for determining the transient potential in passive dendritic trees of known geometry. Biological Cybernetics55 (1986), no. 2‐3, 115-124. https://doi.org/10.1007/BF00341927 · Zbl 0598.92005 · doi:10.1007/BF00341927
[29] Holmes, W. R.Morphoelectrotonic transform. Springer, New York, 2013. https://doi.org/10.1007/978‐1‐4614‐7320‐6_481‐1 · doi:10.1007/978‐1‐4614‐7320‐6_481‐1
[30] Izhikevich, E. M.Simple model of spiking neurons. IEEE Transactions on Neural Networks14 (2003), no. 6, 1569-1572. https://doi.org/10.1109/TNN.2003.820440 · doi:10.1109/TNN.2003.820440
[31] Jack, J. J. B.; Noble, D.; Tsien, R. W.Electric current flow in excitable cells. Clarendon Press, Oxford, 1975.
[32] Jadi, M. P.; Behabadi, B. F.; Poleg‐Polsky, A.; Schiller, J.; Mel, B. W.An augmented two‐layer model captures nonlinear analog spatial integration effects in pyramidal neuron dendrites. Proceedings of the IEEE102 (2014), no. 5, 782-798. https://doi.org/10.1109/JPROC.2014.2312671 · doi:10.1109/JPROC.2014.2312671
[33] Katz, Y.; Menon, V.; Nicholson, D. A.; Geinisman, Y.; Kath, W. L.; Spruston, N.Synapse distribution suggests a two‐stage model of dendritic integration in CA1 pyramidal neurons. Neuron63 (2009), no. 2, 171-177. https://doi.org/10.1016/j.neuron.2009.06.023 · doi:10.1016/j.neuron.2009.06.023
[34] Koch, C.Biophysics of computation: information processing in single neurons. Oxford University Press, New York-Oxford2004.
[35] Koch, C.; Poggio, T.; Torre, V.Retinal ganglion cells: a functional interpretation of dendritic morphology. Phil. Trans. R. Soc. Lond. B298 (1982), no. 1090, 227-263. https://doi.org/10.1098/rstb.1982.0084 · doi:10.1098/rstb.1982.0084
[36] Koch, C.; Poggio, T.; Torre, V.Nonlinear interactions in a dendritic tree: localization, timing, and role in information processing. Proc. Natl. Acad. Sci. USA80 (1983), no. 9, 2799-2802. https://doi.org/10.1073/pnas.80.9.2799 · doi:10.1073/pnas.80.9.2799
[37] Lapicque, L.Recherches quantitatives sur l’excitation électrique des nerfs traitée comme une polarisation. J. Physiol. Pathol. Gen9 (1907), no. 1, 620-635.
[38] Li, S.; Liu, N.; Yao, L.; Zhang, X.; Zhou, D.; Cai, D. Determination of effective synaptic conductances using somatic voltage clamp. PLoS Computational Biology15 (2019), no. 3, e1006871. 10.1371/journal.pcbi.1006871
[39] Li, S.; Liu, N.; Zhang, X.; McLaughlin, D. W.; Zhou, D.; Cai, D.Dendritic computations captured by an effective point neuron model. Proc. Natl. Acad. Sci. USA116 (2019), no. 30, 15244-15252. https://doi.org/10.1073/pnas.1904463116 · doi:10.1073/pnas.1904463116
[40] Li, S.; Liu, N.; Zhang, X.‐h.; Zhou, D.; Cai, D. Bilinearity in spatiotemporal integration of synaptic inputs. PLoS Computational Biology10 (2014), no. 12, e1004014. 10.1371/journal.pcbi.1004014
[41] Li, S.; Zhou, D.; Cai, D.Analysis of the dendritic integration of excitatory and inhibitory inputs using cable models. Commun. Math. Sci.13 (2015), no. 2, 565-575. https://doi.org/10.4310/CMS.2015.v13.n2.a16 · Zbl 1318.35137 · doi:10.4310/CMS.2015.v13.n2.a16
[42] London, M.; Häusser, M.Dendritic computation. Annu. Rev. Neurosci.28 (2005), 503-532. https://doi.org/10.1146/annurev.neuro.28.061604.135703 · doi:10.1146/annurev.neuro.28.061604.135703
[43] Longordo, F.; To, M.‐S.; Ikeda, K.; Stuart, G. J.Sublinear integration underlies binocular processing in primary visual cortex. Nature Neuroscience16 (2013), no. 6, 714-723. https://doi.org/10.1038/nn.3394 · doi:10.1038/nn.3394
[44] Magee, J. C.Dendritic hyperpolarization‐activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. The Journal of Neuroscience18 (1998), no. 19, 7613-7624. https://doi.org/10.1523/JNEUROSCI.18‐19‐07613.1998 · doi:10.1523/JNEUROSCI.18‐19‐07613.1998
[45] Magee, J. C.Dendritic integration of excitatory synaptic input. Nature Reviews Neuroscience1 (2000), no. 3, 181-190. https://doi.org/10.1038/35044552 · doi:10.1038/35044552
[46] Magee, J. C.; Cook, E. P.Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons. Nature Neuroscience3 (2000), no. 9, 895-903. https://doi.org/10.1038/78800 · doi:10.1038/78800
[47] Magee, J. C.; Johnston, D. Characterization of single voltage‐gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. The Journal of Physiology487 (1995), 67-90. 10.1113/jphysiol.1995.sp020862
[48] Major, G.; Evans, J. D.; Jack, J.Solutions for transients in arbitrarily branching cables: I. Voltage recording with a somatic shunt. Biophysical Journal65 (1993), no. 1, 423-449. https://doi.org/10.1016/S0006‐3495(93)81037‐3 · doi:10.1016/S0006‐3495(93)81037‐3
[49] Major, G.; Larkman, A. U.; Jonas, P.; Sakmann, B.; Jack, J. J.Detailed passive cable models of whole‐cell recorded CA3 pyramidal neurons in rat hippocampal slices. Journal of Neuroscience14 (1994), no. 8, 4613-4638. https://doi.org/10.1523/JNEUROSCI.14‐08‐04613.1994 · doi:10.1523/JNEUROSCI.14‐08‐04613.1994
[50] Migliore, M.; Hoffman, D.; Magee, J.; Johnston, D.Role of an A‐type K+ conductance in the back‐propagation of action potentials in the dendrites of hippocampal pyramidal neurons. Journal of Computational Neuroscience7 (1999), no. 1, 5-15. https://doi.org/10.1023/A:1008906225285 · Zbl 0926.92011 · doi:10.1023/A:1008906225285
[51] Morris, C.; Lecar, H.Voltage oscillations in the barnacle giant muscle fiber. Biophysical Journal35 (1981), no. 1, 193-213. https://doi.org/10.1016/S0006‐3495(81)84782‐0 · doi:10.1016/S0006‐3495(81)84782‐0
[52] Nicholson, D. A.; Trana, R.; Katz, Y.; Kath, W. L.; Spruston, N.; Geinisman, Y.Distance‐dependent differences in synapse number and AMPA receptor expression in hippocampal CA1 pyramidal neurons. Neuron50 (2006), no. 3, 431-442. https://doi.org/10.1016/j.neuron.2006.03.022 · doi:10.1016/j.neuron.2006.03.022
[53] Poirazi, P.; Brannon, T.; Mel, B. W.Arithmetic of subthreshold synaptic summation in a model CA1 pyramidal cell. Neuron37 (2003), no. 6, 977-987. https://doi.org/10.1016/S0896‐6273(03)00148‐X · doi:10.1016/S0896‐6273(03)00148‐X
[54] Poirazi, P.; Brannon, T.; Mel, B. W.Pyramidal neuron as two‐layer neural network. Neuron37 (2003), no. 6, 989-999. https://doi.org/10.1016/S0896‐6273(03)00149‐1 · doi:10.1016/S0896‐6273(03)00149‐1
[55] Poleg‐Polsky, A.; Mel, W. B.; Schiller, J.Neuronal shape parameters and substructures as a basis of neuronal form. Nature Neuroscience (2004), 621-627.
[56] Rall, W.Theory of physiological properties of dendrites. Annals of the New York Academy of Sciences96 (1962), no. 4, 1071-1092. https://doi.org/10.1111/j.1749‐6632.1962.tb54120.x · doi:10.1111/j.1749‐6632.1962.tb54120.x
[57] Rall, W.Theoretical significance of dendritic trees for neuronal input‐output relations. Neural Theory and Modeling (1964), 73-97.
[58] Rall, W.Distinguishing theoretical synaptic potentials computed for different soma‐dendritic distributions of synaptic input. Journal of Neurophysiology30 (1967), no. 5, 1138-1168. https://doi.org/10.1152/jn.1967.30.5.1138 · doi:10.1152/jn.1967.30.5.1138
[59] Rall, W.; Burke, R.; Holmes, W.; Jack, J.; Redman, S.; Segev, I. Matching dendritic neuron models to experimental data. Physiological Reviews72 (1992), suppl. 4, S159-S186. 10.1152/physrev.1992.72.suppl_4.S159
[60] Rall, W.; Burke, R.; Smith, T.; Nelson, P.; Frank, K.Dendritic location of synapses and possible mechanisms for the monosynaptic EPSP in motoneurons. Journal of neurophysiology30 (1967), 1169-1193. https://doi.org/10.1152/jn.1967.30.5.1169 · doi:10.1152/jn.1967.30.5.1169
[61] Rall, W.; Rinzel, J.Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model. Biophysical Journal13 (1973), no. 7, 648-688. https://doi.org/10.1016/S0006‐3495(73)86014‐X · doi:10.1016/S0006‐3495(73)86014‐X
[62] Rall, W.; Shepherd, G. M.; Reese, T. S.; Brightman, M. W.Dendrodendritic synaptic pathway for inhibition in the olfactory bulb. Experimental Neurology14 (1966), no. 1, 44-56. https://doi.org/10.1016/0014‐4886(66)90023‐9 · doi:10.1016/0014‐4886(66)90023‐9
[63] Rapp, M.; Segev, I.; Yarom, Y.Physiology, morphology and detailed passive models of guinea‐pig cerebellar Purkinje cells. The Journal of Physiology474 (1994), no. 1, 101-118. https://doi.org/10.1113/jphysiol.1994.sp020006 · doi:10.1113/jphysiol.1994.sp020006
[64] Redman, S.; Walmsley, B.The time course of synaptic potentials evoked in cat spinal motoneurones at identified group Ia synapses. The Journal of Physiology343 (1983), no. 1, 117-133. https://doi.org/10.1113/jphysiol.1983.sp014884 · doi:10.1113/jphysiol.1983.sp014884
[65] Ringach, D.; Shapley, R.Reverse correlation in neurophysiology. Cognitive Science28 (2004), no. 2, 147-166. https://doi.org/10.1207/s15516709cog2802_2 · doi:10.1207/s15516709cog2802_2
[66] Rinzel, J.; Rall, W.Transient response in a dendritic neuron model for current injected at one branch. Biophysical Journal14 (1974), no. 10, 759-790. https://doi.org/10.1016/S0006‐3495(74)85948‐5 · doi:10.1016/S0006‐3495(74)85948‐5
[67] Rose, R. M.; Hindmarsh, J. L.The assembly of ionic currents in a thalamic neuron I. The three‐dimensional model. Proceedings of the Royal Society of London. B. Biological Sciences237 (1989), no. 1288, 267-288. https://doi.org/10.1098/rspb.1989.0049 · doi:10.1098/rspb.1989.0049
[68] Schiller, J.; Schiller, Y.; Stuart, G.; Sakmann, B.Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons. The Journal of Physiology505 (1997), no. 3, 605-616. https://doi.org/10.1111/j.1469‐7793.1997.605ba.x · doi:10.1111/j.1469‐7793.1997.605ba.x
[69] Schmidt‐Hieber, C.; Toleikyte, G.; Aitchison, L.; Roth, A.; Clark, B. A.; Branco, T.; Häusser, M.Active dendritic integration as a mechanism for robust and precise grid cell firing. Nature Neuroscience20 (2017), no. 8, 1114-1121. https://doi.org/10.1038/nn.4582 · doi:10.1038/nn.4582
[70] Segev, I.; London, M.Untangling dendrites with quantitative models. Science290 (2000), no. 5492, 744-750. https://doi.org/10.1126/science.290.5492.744 · doi:10.1126/science.290.5492.744
[71] Segev, I.; Rinzel, J.; Shepherd, G. M.The theoretical foundation of dendritic function: the collected papers of Wilfrid Rall with commentaries. MIT Press, Cambridge, Mass., 2003.
[72] Smith, G. D.; Cox, C. L.; Sherman, S. M.; Rinzel, J.Fourier analysis of sinusoidally driven thalamocortical relay neurons and a minimal integrate‐and‐fire‐or‐burst model. Journal of Neurophysiology83 (2000), no. 1, 588-610. https://doi.org/10.1152/jn.2000.83.1.588 · doi:10.1152/jn.2000.83.1.588
[73] Smith, M. A.; Ellis‐Davies, G. C.; Magee, J. C.Mechanism of the distance‐dependent scaling of Schaffer collateral synapses in rat CA1 pyramidal neurons. The Journal of Physiology548 (2003), no. 1, 245-258. https://doi.org/10.1111/j.1469‐7793.2003.00245.x · doi:10.1111/j.1469‐7793.2003.00245.x
[74] Spruston, N.Pyramidal neurons: dendritic structure and synaptic integration. Nature Reviews Neuroscience9 (2008), no. 3, 206-221. https://doi.org/10.1038/nrn2286 · doi:10.1038/nrn2286
[75] Spruston, N.; Jaffe, D. B.; Johnston, D.Dendritic attenuation of synaptic potentials and currents: the role of passive membrane properties. Trends in Neurosciences17 (1994), no. 4, 161-166. https://doi.org/10.1016/0166‐2236(94)90094‐9 · doi:10.1016/0166‐2236(94)90094‐9
[76] Spruston, N.; Stuart, G.; Häusser, M. Principles of dendritic integration. Dendrites, 351-398. Oxford University Press, Oxford, 2016. 10.1093/acprof:oso/9780198745273.001.0001
[77] Steriade, M.Cortical long‐axoned cells and putative interneurons during the sleep‐waking cycle. Behavioral and Brain Sciences1 (1978), no. 3, 465-485. https://doi.org/10.1017/S0140525X00076111 · doi:10.1017/S0140525X00076111
[78] Steriade, M.; Deschênes, M.; Oakson, G.Inhibitory processes and interneuronal apparatus in motor cortex during sleep and waking. I. Background firing and responsiveness of pyramidal tract neurons and interneurons. Journal of Neurophysiology37 (1974), no. 5, 1065-1092.
[79] Stuart, G.; Spruston, N.Determinants of voltage attenuation in neocortical pyramidal neuron dendrites. The Journal of Neuroscience18 (1998), no. 10, 3501-3510. https://doi.org/10.1523/JNEUROSCI.18‐10‐03501.1998 · doi:10.1523/JNEUROSCI.18‐10‐03501.1998
[80] Stuart, G. J.; Spruston, N.Dendritic integration: 60 years of progress. Nature Neuroscience18 (2015), no. 12, 1713-1721. https://doi.org/10.1038/nn.4157 · doi:10.1038/nn.4157
[81] Timofeeva, Y.; Cox, S. J.; Coombes, S.; Josić, K.Democratization in a passive dendritic tree: an analytical investigation. Journal of Computational Neuroscience25 (2008), no. 2, 228-244. https://doi.org/10.1007/s10827‐008‐0075‐9 · doi:10.1007/s10827‐008‐0075‐9
[82] Tuckwell, H. C.Introduction to theoretical neurobiology. Volume 1: Linear cable theory and dendritic structure. Cambridge University Press, Cambridge, 1988. 10.1017/CBO9780511623271 · Zbl 0647.92009
[83] Ujfalussy, B. B.; Makara, J. K.; Lengyel, M.; Branco, T.Global and multiplexed dendritic computations under in vivo‐like conditions. Neuron100 (2018), no. 3, 579-592. https://doi.org/10.1016/j.neuron.2018.08.032 · doi:10.1016/j.neuron.2018.08.032
[84] Vida, I.; Bartos, M.; Jonas, P.Shunting inhibition improves robustness of gamma oscillations in hippocampal interneuron networks by homogenizing firing rates. Neuron49 (2006), no. 1, 107-117. https://doi.org/10.1016/j.neuron.2005.11.036 · doi:10.1016/j.neuron.2005.11.036
[85] Xu, N.‐l.; Harnett, M. T.; Williams, S. R.; Huber, D.; O’Connor, D. H.; Svoboda, K.; Magee, J. C. Nonlinear dendritic integration of sensory and motor input during an active sensing task. Nature492 (2012), no. 7428, 247-251. 10.1038/nature11601
[86] Zador, A.; Agmon‐Snir, H.; Segev, I.The morphoelectrotonic transform: a graphical approach to dendritic function. The Journal of Neuroscience15 (1995), no. 3, 1669-1682. https://doi.org/10.1523/JNEUROSCI.15‐03‐01669.1995 · doi:10.1523/JNEUROSCI.15‐03‐01669.1995
[87] Zhao, X.; Liu, M.; Cang, J.Sublinear binocular integration preserves orientation selectivity in mouse visual cortex. Nature Communications4 (2013), 2088. https://doi.org/10.1038/ncomms3088 · doi:10.1038/ncomms3088
[88] Zhou, D.; Li, S.; Zhang, X.‐h.; Cai, D. Phenomenological incorporation of nonlinear dendritic integration using integrate‐and‐fire neuronal frameworks. PloS One8 (2013), no. 1, e53508. 10.1371/journal.pone.0053508
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.