×

Coarse geometry of pure mapping class groups of infinite graphs. (English) Zbl 1522.20168

The authors study mapping class groups of locally finite infinite graphs. The pure mapping class group is the subgroup of the mapping class group where the ends are fixed pointwise.
The cases when the pure mapping class group of a locally finite, infinite graph is globally coarsely bounded and when it is locally coarsely bounded are classified.
They also establish lower bounds on the first integral cohomology of the pure mapping class group for some graphs and compute the asymptotic dimension of all locally coarsely bounded pure mapping class groups of infinite rank graphs.

MSC:

20F65 Geometric group theory
05C63 Infinite graphs
57K20 2-dimensional topology (including mapping class groups of surfaces, Teichmüller theory, curve complexes, etc.)
57M15 Relations of low-dimensional topology with graph theory
05C10 Planar graphs; geometric and topological aspects of graph theory
20E36 Automorphisms of infinite groups
20F38 Other groups related to topology or analysis

References:

[1] Algom-Kfir, Y.; Bestvina, M., Groups of proper homotopy equivalences of graphs and Nielsen realization (2021), arXiv preprint
[2] Aramayona, J.; Patel, P.; Vlamis, N. G., The first integral cohomology of pure mapping class groups, Int. Math. Res. Not., 2020, 22, 8973-8996 (2020) · Zbl 1462.57020
[3] Aramayona, J.; Vlamis, N. G., Big mapping class groups: an overview, (In the Tradition of Thurston (2020)), 459-496 · Zbl 1479.57037
[4] Ayala, R.; Dominguez, E.; Márquez, A.; Quintero, A., Proper homotopy classification of graphs, Bull. Lond. Math. Soc., 22, 5, 417-421 (1990) · Zbl 0686.05020
[5] Bestvina, M., \( \mathbb{R} \)-trees in topology, geometry, and group theory, (Handbook of Geometric Topology (2002), North-Holland: North-Holland Amsterdam), 55-91 · Zbl 0998.57003
[6] Bestvina, M., Geometry of outer space, (Bestvina, M.; Sageev, M.; Vogtmann, K., Geometric Group Theory. Geometric Group Theory, IAS/Park City Mathematics Series, vol. 21 (2014)), 173-206 · Zbl 1440.20009
[7] Cornulier, Y.; de la Harpe, P., Metric Geometry of Locally Compact Groups, EMS Tracts in Mathematics. European Mathematical, vol. 25 (2016), Society (EMS): Society (EMS) Zürich, winner of the 2016 EMS Monograph Award · Zbl 1352.22001
[8] Dehn, M., Papers on Group Theory and Topology (1987), Springer-Verlag: Springer-Verlag New York · Zbl 1264.01046
[9] Domat, G.; Hoganson, H.; Kwak, S., The automorphism group of the infinite-rank free group is coarsely bounded, N.Y. J. Math., 28, 1506-1511 (2022) · Zbl 07646823
[10] Duchin, M., Hyperbolic groups, (Clay, M.; Margalit, D., Office Hours with a Geometric Group Theorist (2017), Princeton University Press: Princeton University Press Princeton), 176-202, chapter 9 · Zbl 1430.20041
[11] Dudley, R. M., Continuity of homomorphisms, Duke Math. J., 28, 4, 587-594 (1961) · Zbl 0103.01702
[12] Durham, M. G.; Fanoni, F.; Vlamis, N. G., Graphs of curves on infinite-type surfaces with mapping class group actions, Ann. Inst. Fourier, 68, 2581-2612 (2018) · Zbl 1416.57013
[13] Grant, C.; Rafi, K.; Verberne, Y., Asymptotic dimension of big mapping class groups (2021), arXiv preprint
[14] Grushko, I. A., On the bases of a free product of groups, Mat. Sb., 8, 50, 169-182 (1940) · Zbl 0023.30102
[15] Hatcher, A., Algebraic Topology (2002), Cambridge University Press · Zbl 1044.55001
[16] Kerékjártó, B., Vorlesungen uber Topologie (1923), J. Springer · JFM 49.0396.07
[17] Kurosch, A., Die Untergruppen der freien Produkte von beliebigen Gruppen, Math. Ann., 109, 1, 647-660 (1934) · JFM 60.0082.02
[18] Lickorish, W. B.R., A Finite Set of Generators for the Homeotopy Group of a 2-Manifold, In Mathematical Proceedings of the Cambridge Philosophical Society, vol. 60, 769-778 (1964), Cambridge University Press · Zbl 0131.20801
[19] K. Mann, K. Rafi, Large scale geometry of big mapping class groups, in: Geometry and Topology, 2023, in press. · Zbl 07781512
[20] Patel, P.; Vlamis, N. G., Algebraic and topological properties of big mapping class groups, Algebraic Geom. Topol., 18, 7, 4109-4142 (2018) · Zbl 1490.57016
[21] Richards, I., On the classification of noncompact surfaces, Trans. Am. Math. Soc., 106, 2, 259-269 (1963) · Zbl 0156.22203
[22] Roe, J., Lectures on Coarse Geometry, University Lecture Series, vol. 31 (2003), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 1042.53027
[23] Roelcke, W.; Dierolf, S., Uniform Structures on Topological Groups and Their Quotients (1981), McGraw-Hill, advanced book program · Zbl 0489.22001
[24] Rosendal, C., Coarse Geometry of Topological Groups, Cambridge Tracts in Mathematics, vol. 223 (2022), Cambridge University Press: Cambridge University Press Cambridge
[25] Sklinos, R., 2 Independence and Interpretable Structures in Nonabelian Free Groups, 51-86 (2021), De Gruyter · Zbl 1528.03168
[26] Stallings, J. R., Topology of finite graphs, Invent. Math., 71, 3, 551-565 (1983) · Zbl 0521.20013
[27] Vogtmann, K., Automorphisms of free groups and outer space, (Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part i, vol. 94. Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part i, vol. 94, Haifa, 2000 (2002)), 1-31 · Zbl 1017.20035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.