×

Blow-up criteria for a Keller-Segel-Navier-Stokes system in a bounded domain. (English) Zbl 1507.35045

The authors consider the Keller-Segel-Navier-Stokes system in a bounded domain \[ \begin{aligned} \partial_t u+u\cdot \nabla u+\nabla\pi-\Delta u+n\nabla\phi=0,\text{ in } \Omega\times(0,\infty),\\ \operatorname{div} u=0,\text{ in }\Omega\times(0,\infty),\\ \partial_t n+u\cdot \nabla n-\Delta n=-\nabla\cdot(n\nabla p)-\nabla\cdot(n\nabla q),\text{ in }\Omega\times(0,\infty),\\ \partial_tp+u\cdot\nabla p-\Delta p=-np,\text{ in } \Omega\times(0,\infty),\\ \partial_tq+u\cdot\nabla q-\Delta q+q=n,\text{ in } \Omega\times(0,\infty),\\ u=0,\quad\frac{\partial n}{\partial\nu}=\frac{\partial p}{\partial\nu}=\frac{\partial q}{\partial\nu}=0,\text{ on } \partial\Omega\times(0,\infty),\\ (u,n,p,q)(\cdot,0)=(u_0,n_0,p_0,q_0)(\cdot),\text{ in }\Omega\subset\mathbb{R}^3, \end{aligned} \] where \(u\) denotes the velocity of the fluid and \(\pi\) is the pressure, \(n\), \(p\) and \(q\) denote the density of amoebae, oxygen and chemical attractant, respectively. The function \(\phi\) is a potential function. \(\Omega\) is a bounded domain in \(\mathbb{R}^3\) with smooth boundary \(\partial\Omega\), \(\nu\) is the unit outward normal vector to \(\partial\Omega\). The authors prove some blow-up criteria of the local strong solutions.

MSC:

35B44 Blow-up in context of PDEs
35K51 Initial-boundary value problems for second-order parabolic systems
35K59 Quasilinear parabolic equations
35Q30 Navier-Stokes equations
92C17 Cell movement (chemotaxis, etc.)
Full Text: DOI

References:

[1] Kozono, H.; Miura, M.; Sugiyama, Y., Existence and uniqueness theorem on mild solutions to the Keller-Segel system coupled with the Navier-Stokes fluid, J. Funct. Anal., 270, 1663-1683 (2016) · Zbl 1343.35069
[2] Kim, H., A blow-up criterion for the nonhomogeneous incompressible Navier-Stokes equations, SIAM J. Math. Anal., 37, 1417-1434 (2006) · Zbl 1141.35432
[3] Berselli, L. C., On a regularity criterion for solution to the 3D Navier-Stokes equations, Differential Integral Equations, 15, 1129-1137 (2002) · Zbl 1034.35087
[4] Berselli, L. C.; Fan, J., Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equtions in a bounded domain, Commun. Pure Appl. Anal., 14, 2, 637-655 (2015) · Zbl 1314.35079
[5] Keller, E.; Segel, L., Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26, 399-415 (1970) · Zbl 1170.92306
[6] Keller, E.; Segel, L., Model for chemotaxis, J. Theoret. Biol., 30, 225-234 (1971) · Zbl 1170.92307
[7] Keller, E.; Segel, L., Traveling bands of chemotactic bacteria: a theoretical analysis, J. Theoret. Biol., 30, 235-248 (1971) · Zbl 1170.92308
[8] Biler, P., Global solutions to some parabolic-elliptic systems of chemotaxis, Adv. Math. Sci. Appl., 9, 347-359 (2009) · Zbl 0941.35009
[9] Corrias, L.; Perthame, B.; Zaag, H., Global solutions of some chemotaxis and angiogenesis systems in high space dimensions, Milan J. Math., 72, 1-28 (2004) · Zbl 1115.35136
[10] Hillen, T.; Painter, K., A user’s guide to PDE models for chemotaxis, J. Math. Biol., 58, 183-217 (2009) · Zbl 1161.92003
[11] Horstmann, D., From 1970until present: the Keller-Segel model in chemotaxis and its consequences: I Jahresber, Dtsch. Math.-Ver., 105, 103-165 (2003) · Zbl 1071.35001
[12] Sleeman, B.; Ward, M.; Wei, J., Existence, stability, and dynamics of spike patterns in a chemotaxis model, SIAM J. Appl. Math., 65, 790-817 (2005) · Zbl 1073.35118
[13] Winkler, M., Global solutions in a fully parabolic chemotaxis system with singular sensitivity, Math. Methods Appl. Sci., 34, 176-190 (2011) · Zbl 1291.92018
[14] Wrzosek, D., Long time behaviour of solutions to a chemotaxis model with volume filling effect, Proc. R. Soc. Edinburgh A, 136, 431-444 (2006) · Zbl 1104.35007
[15] Fan, J.; Li, F., Global strong solutions to a coupled Chemotaxis-Fluid model with subcritical sensitivity, Acta Appl. Math., 169, 767-791 (2020) · Zbl 1459.35361
[16] Ferreira, L. C.F.; Postigo, M., Global well-posedness and asymptotic behavior in Besov-Morrey spaces for Chemotaxis-Navier-Stokes fluids, J. Math. Phys., 60, 6, Article 061502 pp. (2019) · Zbl 1418.92017
[17] Wang, Y.; Winkler, M.; Xiang, Z., Global classical solutions in a two-dimensional chemotaxis-Navier-Stokes system with subcritical sensitivity, Ann. Sc. Norm. Super. Pisa, Cl. Sci., 18, 2, 421-466 (2018) · Zbl 1395.92024
[18] Fan, J.; Zhao, K., Improved extensibility criteria and global well-posedness of a coupled chemotaxis-fluid model on bounded domains, Discrete Contin. Dyn. Syst. Ser. B, 23, 9, 3949-3967 (2018) · Zbl 1406.35271
[19] Triebel, H., Interpolation Theory, Function Spaces, Differential Operators (1995), Johann Ambrosius Barth: Johann Ambrosius Barth Heidelberg · Zbl 0830.46028
[20] Amann, H., Maximal regularity for nonautonomous evolution equations, Adv. Nonlinear Stud., 4, 417-430 (2004) · Zbl 1072.35103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.