×

Robust estimation for a general functional single index model via quantile regression. (English) Zbl 07643154

Summary: This paper studies the estimation of a general functional single index model, in which the conditional distribution of the response depends on the functional predictor via a functional single index structure. We find that the slope function can be estimated consistently by the estimation obtained by fitting a misspecified functional linear quantile regression model under some mild conditions. We first obtain a consistent estimator of the slope function using functional linear quantile regression based on functional principal component analysis, and then employ a local linear regression technique to estimate the conditional quantile function and establish the asymptotic normality of the resulting estimator for it. The finite sample performance of the proposed estimation method is studied in Monte Carlo simulations, and is illustrated by an application to a real dataset.

MSC:

62-XX Statistics

Software:

fda (R)
Full Text: DOI

References:

[1] Ait-Saïdi, A.; Ferraty, F.; Kassa, R.; Vieu, P., Cross-validated estimations in the single-functional index model, Statistics, 42, 6, 475-494 (2008) · Zbl 1274.62519 · doi:10.1080/02331880801980377
[2] Cai, TT; Hall, P., Prediction in functional linear regression, The Annals of Statistics, 34, 5, 2159-2179 (2006) · Zbl 1106.62036 · doi:10.1214/009053606000000830
[3] Cai, TT; Yuan, M., Minimax and adaptive prediction for functional linear regression, Journal of the American Statistical Association, 107, 499, 1201-1216 (2012) · Zbl 1443.62196 · doi:10.1080/01621459.2012.716337
[4] Cardot, H.; Ferraty, F.; Sarda, P., Spline estimators for the functional linear model, Statistica Sinica, 2003, 571-591 (2003) · Zbl 1050.62041
[5] Chen, D.; Hall, P.; Müller, H-G, Single and multiple index functional regression models with nonparametric link, The Annals of Statistics, 39, 3, 1720-1747 (2011) · Zbl 1220.62040 · doi:10.1214/11-AOS882
[6] Chen, K.; Müller, H-G, Conditional quantile analysis when covariates are functions, with application to growth data, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 74, 1, 67-89 (2012) · Zbl 1411.62095 · doi:10.1111/j.1467-9868.2011.01008.x
[7] Crambes, C.; Kneip, A.; Sarda, P., Smoothing splines estimators for functional linear regression, The Annals of Statistics, 37, 1, 35-72 (2009) · Zbl 1169.62027 · doi:10.1214/07-AOS563
[8] Delaigle, A.; Hall, P.; Apanasovich, TV, Weighted least squares methods for prediction in the functional data linear model, Electronic Journal of Statistics, 3, 865-885 (2009) · Zbl 1326.62151 · doi:10.1214/09-EJS379
[9] Fan, J.; Gijbels, I., Local polynomial modelling and its applications (1996), London: Chapman and Hall, London · Zbl 0873.62037
[10] Fan, Y.; James, GM; Radchenko, P., Functional additive regression, The Annals of Statistics, 43, 5, 2296-2325 (2015) · Zbl 1327.62252 · doi:10.1214/15-AOS1346
[11] Ferraty, F.; Goia, A.; Salinelli, E.; Vieu, P., Functional projection pursuit regression, Test, 22, 2, 293-320 (2013) · Zbl 1367.62117 · doi:10.1007/s11749-012-0306-2
[12] Ferraty, F.; Rabhi, A.; Vieu, P., Conditional quantiles for dependent functional data with application to the climatic“ el niño” phenomenon, Sankhyā: The Indian Journal of Statistics, 2005, 378-398 (2005) · Zbl 1192.62104
[13] Ferraty, F.; Vieu, P., Nonparametric functional data analysis: Theory and practice (2006), Berlin: Springer Science & Business Media, Berlin · Zbl 1119.62046
[14] Goia, A.; Vieu, P., Some advances in semiparametric functional data modelling, Contributions in Infinite-Dimensional Statistics and Related Topics, 2014, 135-140 (2014) · Zbl 1430.62077
[15] Goia, A.; Vieu, P., A partitioned single functional index model, Computational Statistics, 30, 3, 673-692 (2015) · Zbl 1342.65034 · doi:10.1007/s00180-014-0530-1
[16] Hall, P.; Horowitz, JL, Methodology and convergence rates for functional linear regression, The Annals of Statistics, 35, 1, 70-91 (2007) · Zbl 1114.62048 · doi:10.1214/009053606000000957
[17] He, G.; Müller, H-G; Wang, J-L; Yang, W., Functional linear regression via canonical analysis, Bernoulli, 16, 3, 705-729 (2010) · Zbl 1220.62076 · doi:10.3150/09-BEJ228
[18] Hsing, T.; Eubank, R., Theoretical foundations of functional data analysis, with an introduction to linear operators (2015), Hoboken: Wiley, Hoboken · Zbl 1338.62009 · doi:10.1002/9781118762547
[19] Kai, B.; Li, R.; Zou, H., New efficient estimation and variable selection methods for semiparametric varying-coefficient partially linear models, Annals of statistics, 39, 1, 305-332 (2011) · Zbl 1209.62074 · doi:10.1214/10-AOS842
[20] Kato, K., Estimation in functional linear quantile regression, The Annals of Statistics, 40, 6, 3108-3136 (2012) · Zbl 1296.62104 · doi:10.1214/12-AOS1066
[21] Kong, D.; Xue, K.; Yao, F.; Zhang, HH, Partially functional linear regression in high dimensions, Biometrika, 103, 1, 147-159 (2016) · Zbl 1452.62500 · doi:10.1093/biomet/asv062
[22] Li, Y.; Hsing, T., Deciding the dimension of effective dimension reduction space for functional and high-dimensional data, The Annals of Statistics, 38, 5, 3028-3062 (2010) · Zbl 1200.62115 · doi:10.1214/10-AOS816
[23] Li, Y.; Wang, N.; Carroll, RJ, Selecting the number of principal components in functional data, Journal of the American Statistical Association, 108, 504, 1284-1294 (2013) · Zbl 1288.62102 · doi:10.1080/01621459.2013.788980
[24] Ma, S., Estimation and inference in functional single-index models, Annals of the Institute of Statistical Mathematics, 68, 1, 181-208 (2016) · Zbl 1440.62132 · doi:10.1007/s10463-014-0488-3
[25] Ma, S.; He, X., Inference for single-index quantile regression models with profile optimization, The Annals of Statistics, 44, 3, 1234-1268 (2016) · Zbl 1338.62119 · doi:10.1214/15-AOS1404
[26] Müller, H-G; Stadtmüller, U., Generalized functional linear models, The Annals of Statistics, 33, 2, 774-805 (2005) · Zbl 1068.62048 · doi:10.1214/009053604000001156
[27] Pollard, D., Asymptotics for least absolute deviation regression estimators, Econometric Theory, 7, 2, 186-199 (1991) · doi:10.1017/S0266466600004394
[28] Ramsay, G.; Silverman, H., Functional data analysis (2005), New York: Springer, New York · Zbl 1079.62006 · doi:10.1007/b98888
[29] Shin, H.; Lee, S., An rkhs approach to robust functional linear regression, Statistica Sinica, 2016, 255-272 (2016) · Zbl 1372.62018
[30] Wang, G.; Feng, X-N; Chen, M., Functional partial linear single-index model, Scandinavian Journal of Statistics, 43, 1, 261-274 (2016) · Zbl 1371.62037 · doi:10.1111/sjos.12178
[31] Wang, J-L; Chiou, J-M; Müller, H-G, Functional data analysis, Annual Review of Statistics and Its Application, 3, 257-295 (2016) · doi:10.1146/annurev-statistics-041715-033624
[32] Yao, F.; Lei, E.; Wu, Y., Effective dimension reduction for sparse functional data, Biometrika, 102, 2, 421-437 (2015) · Zbl 1452.62996 · doi:10.1093/biomet/asv006
[33] Yao, F.; Müller, H-G; Wang, J-L, Functional data analysis for sparse longitudinal data, Journal of the American Statistical Association, 100, 470, 577-590 (2005) · Zbl 1117.62451 · doi:10.1198/016214504000001745
[34] Yao, F.; Sue-Chee, S.; Wang, F., Regularized partially functional quantile regression, Journal of Multivariate Analysis, 156, 39-56 (2017) · Zbl 1369.62083 · doi:10.1016/j.jmva.2017.02.001
[35] Yao, F.; Wu, Y.; Zou, J., Probability-enhanced effective dimension reduction for classifying sparse functional data, Test, 25, 1, 1-22 (2016) · Zbl 1336.62198 · doi:10.1007/s11749-015-0470-2
[36] Yuan, M.; Cai, TT, A reproducing kernel hilbert space approach to functional linear regression, The Annals of Statistics, 38, 6, 3412-3444 (2010) · Zbl 1204.62074 · doi:10.1214/09-AOS772
[37] Zhu, H.; Li, R.; Zhang, R.; Lian, H., Nonlinear functional canonical correlation analysis via distance covariance, Journal of Multivariate Analysis, 180 (2020) · Zbl 1450.62059 · doi:10.1016/j.jmva.2020.104662
[38] Zhu, H.; Zhang, R.; Yu, Z.; Lian, H.; Liu, Y., Estimation and testing for partially functional linear errors-in-variables models, Journal of Multivariate Analysis, 170, 296-314 (2019) · Zbl 1420.62186 · doi:10.1016/j.jmva.2018.11.005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.