×

Dynamical analysis of an impulsive stochastic infected predator-prey system with BD functional response and modified saturated incidence. (English) Zbl 1505.92173


MSC:

92D25 Population dynamics (general)
92D30 Epidemiology
34A37 Ordinary differential equations with impulses
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
Full Text: DOI

References:

[1] Bernoulli, D.: Essai d’une nouvelle analyse de la mortalité cause par la petite vérole et des avantages de l’inoculation pour la prévenir. Mémoires de l’Académie Roy. des Sci. de Paris. (1760)
[2] Harmer, W., Epidemic disease in England-The evidence of variability and of persistency of type, Lancet., 167, 4306, 733-739 (1906)
[3] Ross, SR, The prevention of malaria (1911), London: London Murray, London
[4] Kermack, WO; McKendrick, AG, A contribution to the mathematical theory of epidemics-I, B. Math. Biol., 53, 1-2, 33-55 (1991)
[5] Kermack, WO; McKendrick, AG, Contributions to the mathematical theory of epidemics-II. The problem of endemicity, B. Math. Biol., 53, 1-2, 57-87 (1991)
[6] May, RM; Anderson, RM; Irwin, ME, The transmission dynamics of human immunodeficiency virus (HIV), Philos. Trans. Roy. Soc. Lond. B., 321, 1207, 565-607 (1988) · doi:10.1098/rstb.1988.0108
[7] Chattopadhyay, J.; Arino, O., A predator-prey model with disease in the prey, Nonlinear Anal-Theor., 36, 6, 747-766 (1999) · Zbl 0922.34036 · doi:10.1016/S0362-546X(98)00126-6
[8] Getz, WM; Pickering, J., Epidemic models: Thresholds and population regulation, Am. Nat., 121, 6, 892-898 (1983) · doi:10.1086/284112
[9] Bairagi, N.; Roy, PK; Chattopadhyay, J., Role of infection on the stability of a predator-prey system with several response functions-a comparative study, J. Theor. Biol., 248, 1, 10-25 (2007) · Zbl 1451.92274 · doi:10.1016/j.jtbi.2007.05.005
[10] Lu, C.; Ding, XH, Periodic solutions and stationary distribution for a stochastic predator-prey system with impulsive perturbations, Appl. Math. Comput., 350, 313-322 (2019) · Zbl 1428.34056
[11] Xu, CH; Yu, YG; Ren, GJ, Dynamic analysis of a stochastic predator-prey model with Crowley-Martin functional response, disease in predator, and saturation incidence, J. Comput. Nonlin. Dyn., 15, 7, 071004 (2020) · doi:10.1115/1.4047085
[12] Liu, GD; Wang, X.; Meng, XZ; Gao, SJ, Extinction and persistence in mean of a novel delay impulsive stochastic infected predator-prey system with jumps, Complexity., 2017, 1950970 (2017) · Zbl 1407.92112 · doi:10.1155/2017/1950970
[13] Xu, CH; Yu, YG; Ren, GJ; Hai, XD; Lu, ZZ, Extinction and permanence analysis of stochastic predator-prey model with disease, ratio-dependent type functional response and nonlinear incidence rate, J. Comput. Nonlin. Dyn., 16, 11, 111004 (2021) · doi:10.1115/1.4051996
[14] Levi, T.; Kilpatrick, AM; Mangel, M.; Wilmers, CC, Deer, predators, and the emergence of Lyme disease, P. Natl. Acad. Sci. U.S.A., 109, 27, 10942-10947 (2012) · doi:10.1073/pnas.1204536109
[15] Biswas, S.; Sasmal, S.; Samanta, S.; Saifuddin, M.; Khan, QJA; Chattopadhyay, J., A delayed eco-epidemiological system with infected prey and predator subject to the weak Allee effect, Math. Biosci., 263, 198-208 (2015) · Zbl 1348.92145 · doi:10.1016/j.mbs.2015.02.013
[16] Zhang, XL; Huang, YH; Weng, PX, Permanence and stability of a diffusive predator-prey model with disease in the prey, Comput. Math. Appl., 68, 10, 1431-1445 (2014) · Zbl 1367.92112 · doi:10.1016/j.camwa.2014.09.011
[17] Abhijit, M.; Debadatta, A.; Nandadulal, B., Persistence and extinction of species in a disease-induced ecological system under environmental stochasticity, Phys. Rev. E., 103, 3, 032412 (2021) · doi:10.1103/PhysRevE.103.032412
[18] Deng, ML; Fan, YB, Invariant measure of a stochastic hybrid predator-prey model with infected prey, Appl. Math. Lett., 124, 107670 (2022) · Zbl 1478.92153 · doi:10.1016/j.aml.2021.107670
[19] Foryś, U.; Qiao, MH, Asymptotic dynamics of a deterministic and stochastic predator-prey model with disease in the prey species, Math. Method. Appl. Sci., 37, 3, 306-320 (2014) · Zbl 1288.34044 · doi:10.1002/mma.2783
[20] Ji, CY; Jiang, DQ, Dynamics of a stochastic density dependent predator-prey system with Beddington-DeAngelis functional response, J. Math. Anal. Appl., 381, 1, 441-453 (2011) · Zbl 1232.34072 · doi:10.1016/j.jmaa.2011.02.037
[21] Jana, S.; Kar, TK, Modeling and analysis of a prey-predator system with disease in the prey, Chaos Solitons Fractals, 47, 42-53 (2013) · Zbl 1258.92038 · doi:10.1016/j.chaos.2012.12.002
[22] Chakraborty, K.; Das, K.; Haldar, S.; Kar, TK, A mathematical study of an eco-epidemiological system on disease persistence and extinction perspective, Appl. Math. Comput., 254, 99-112 (2015) · Zbl 1410.92094
[23] Anderson, R.; May, R., Population biological of infectious disease (1982), Springer, Berlin: Heidelberg. Germany, Springer, Berlin · doi:10.1007/978-3-642-68635-1
[24] Capasso, V.; Serio, G., Generalization of the Kermack-McKendrick deterministic epidemic model, Math. Biosci., 42, 1-2, 43-61 (1978) · Zbl 0398.92026 · doi:10.1016/0025-5564(78)90006-8
[25] Wei, CJ; Chen, LS, A delayed epidemic model with pulse vaccination, Discrete Dyn. Nat. Soc., 2008, 1, 746951 (2008) · Zbl 1149.92329
[26] Kaddar, A., On the dynamics of a delayed SIR epidemic model with a modified saturated incidence rate, Electron. J. Differ. Eq., 2009, 133, 1-7 (2009) · Zbl 1183.37092
[27] Liu, ZJ, Dynamics of positive solutions to SIR and SEIR epidemic models with saturated incidence rates, Nonlinear Anal-Real., 14, 3, 1286-1299 (2013) · Zbl 1261.34040 · doi:10.1016/j.nonrwa.2012.09.016
[28] Suryanto, A.; Kusumawinahyu, WM; Darti, I.; Yanti, I., Dynamically consistent discrete epidemic model with modified saturated incidence rate, Comput. Appl. Math., 32, 2, 373-383 (2013) · Zbl 1293.37035 · doi:10.1007/s40314-013-0026-6
[29] Tan, RH; Liu, ZJ; Guo, SL; Xiang, HL, On a nonautonomous competitive system subject to stochastic and impulsive perturbations, Appl. Math. Comput., 256, 702-714 (2015) · Zbl 1338.92113
[30] Liu, M.; Wang, K., On a stochastic logistic equation with impulsive perturbations, Comput. Math. Appl., 63, 5, 871-886 (2012) · Zbl 1247.60085 · doi:10.1016/j.camwa.2011.11.003
[31] Liu, M.; Wang, K., Persistence, extinction and global asymptotical stability of a non-autonomous predator-prey model with random perturbation, Appl. Math. Model., 36, 11, 5344-5353 (2012) · Zbl 1254.34074 · doi:10.1016/j.apm.2011.12.057
[32] Mao, X.; Yuan, C., Stochastic differential equations with Markovian switching (2006), London: Imperial College Press, London · Zbl 1126.60002 · doi:10.1142/p473
[33] Mao, X., Stochastic differential equations and applications (1997), Chichester: Horwood Publishing, Chichester · Zbl 0892.60057
[34] Liu, M.; Wang, K., Dynamics and simulations of a logistic model with impulsive perturbations in a random environment, Math. Comput. Simulat., 92, 53-75 (2013) · Zbl 1499.34294 · doi:10.1016/j.matcom.2013.04.011
[35] Wu, RH; Zou, XL; Wang, K., Asymptotic behavior of a stochastic non-autonomous predator-prey model with impulsive perturbations, Commun. Nonlinear Sci., 20, 3, 965-974 (2015) · Zbl 1304.92117 · doi:10.1016/j.cnsns.2014.06.023
[36] Shi, RQ; Jiang, XW; Chen, LS, A predator-prey model with disease in the prey and two impulses for integrated pest management, Appl. Math. Model., 33, 5, 2248-2256 (2008) · Zbl 1185.34015 · doi:10.1016/j.apm.2008.06.001
[37] Liu, ZJ; Wu, JH; Chen, YP; Haque, M., Impulsive perturbations in a periodic delay differential equation model of plankton allelopathy, Nonlinear Anal-Real., 11, 1, 432-445 (2010) · Zbl 1190.34084 · doi:10.1016/j.nonrwa.2008.11.017
[38] Wei, CJ; Chen, LS, Periodic solution and heteroclinic bifurcation in a predator-prey system with Allee effect and impulsive harvesting, Nonlinear Dynam., 76, 2, 1109-1117 (2014) · Zbl 1306.92052 · doi:10.1007/s11071-013-1194-z
[39] Hardy, GH; Littlewood, JE; Polya, G., Inequalities (1952), Cambridge: Cambridge University Press, Cambridge · Zbl 0047.05302
[40] Karatzas, I.; Shreve, SE, Brownian motion and stochastic calculus (1998), Berlin: Springer-Verlag, Berlin · Zbl 0734.60060 · doi:10.1007/978-1-4612-0949-2
[41] Barblart, I., Systemes d’équations différentielles d’oscillations non linéaires, RevueRoumaine de Mathematiques Pures et Appliquees., 4, 2, 267-270 (1959) · Zbl 0090.06601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.