×

The CM class number one problem for curves of genus 2. (English) Zbl 1533.11115

Finding elliptic curves defined over the rationals and with complex multiplication (CM) is equivalent to the Gauss’ class number one problem for imaginary quadratic fields and was solved by K. Heegner [Math. Z. 56, 227–253 (1952; Zbl 0049.16202)], A. Baker [Mathematika 13, 204–216 (1966; Zbl 0161.05201)] and H. M. Stark [Mich. Math. J. 14, 1–27 (1967; Zbl 0148.27802)]. The similar problem for genus 2 is considered here and completes a series of papers given each a part of the full answer.
The problem actually comes in various flavors. First the authors restricts to non-biquadratic quartic CM fields which corresponds to absolutely simple abelian varieties (for the left case, partial results are available in [A. Gélin et al., Open Book Ser. 2, 257–274 (2019; Zbl 1517.11063)] and a preprint by F. Narbonne [“Polarized products of elliptic curves with complex multiplication and field of moduli \(\mathbb Q\)”, Preprint, arXiv:2203.11982] for maximal orders).
For these ones, the case where there exists a curve over \(\mathbb{Q}\) with Jacobian having CM by an order in a quartic number field only happens for cyclic extensions with class number 1. [N. Murabayashi and A. Umegaki, RIMS Kokyuroku 1160, 169–176 (2000; Zbl 0969.14502)] already found the 19 ones corresponding to maximal orders and [F. Bouyer and M. Streng, LMS J. Comput. Math. 18, 507–538 (2015; Zbl 1397.11103)] showed that this list is complete under this restriction. Two new curves with non-maximal orders were given in [G. Bisson and M. Streng, Math. Res. Lett. 24, No. 2, 247–270 (2017; Zbl 1417.11114)]. It remained to prove that the list is now complete which is done here by enumerating the 20 cyclic quartic CM fields with class number 1 (the abelian variety also depends on the type of the CM field, which explains why one can have 21 curves for 20 fields only).
Then, the authors extend the problem by finding 301 (resp. 231) \(\overline{\mathbb{Q}}\)-isomorphism classes of genus \(2\) curves such that their Jacobian has CM by an order (resp. the maximal order) in a quartic CM field and with field of moduli contained in the reflex field (a field naturally associated to the CM field and type). On top of this theoretical results, numerical computations have been done to find models for some of the curves (at least to find all Igusa invariants), although the authors warned about the fact that these computations are not certified.
In order to achieve their classification, a lot of efforts is necessary to obtain the list of CM fields satisfying a variation of the class number one problem (called CM class number 1 in the article). Available bounds on the discriminants of such fields are too large and sieving techniques are deployed to make the list manageable. Nice results are also showed on the way about the possible splitting type of ramified primes.

MSC:

11G15 Complex multiplication and moduli of abelian varieties
11R29 Class numbers, class groups, discriminants
14K22 Complex multiplication and abelian varieties
14H45 Special algebraic curves and curves of low genus

References:

[1] Heegner, K., Diophantische analysis und Modulfunktionen, Math. Z., 56, 227-253 (1952) · Zbl 0049.16202 · doi:10.1007/BF01174749
[2] Baker, A., Linear forms in the logarithms of algebraic numbers, I. Mathematika, 13, 204-216 (1966) · Zbl 0161.05201 · doi:10.1112/S0025579300003971
[3] Stark, HM, A complete determination of the complex quadratic fields of class-number one, Mich. Math. J., 14, 1-27 (1967) · Zbl 0148.27802 · doi:10.1307/mmj/1028999653
[4] Uchida, K., Imaginary abelian number fields with class number one, Tohoku Math. J., 2, 24, 487-499 (1972) · Zbl 0248.12007 · doi:10.2748/tmj/1178241490
[5] Setzer, B., The determination of all imaginary, quartic, abelian number fields with class number \(1\), Math. Comput., 35, 152, 1383-1386 (1980) · Zbl 0455.12004 · doi:10.2307/2006404
[6] Louboutin, S.; Okazaki, R., Determination of all non-normal quartic CM-fields and of all non-abelian normal octic CM-fields with class number one, Acta Arith., 67, 1, 47-62 (1994) · Zbl 0809.11069 · doi:10.4064/aa-67-1-47-62
[7] Murabayashi, N.; Umegaki, A., Determination of all \({ Q}\)-rational CM-points in the moduli space of principally polarized abelian surfaces, Sūrikaisekikenkyūsho Kōkyūroku, 1160, 169-176 (2000) · Zbl 0969.14502
[8] van Wamelen, P., Examples of genus two CM curves defined over the rationals, Math. Comput., 68, 225, 307-320 (1999) · Zbl 0906.14025 · doi:10.1090/S0025-5718-99-01020-0
[9] Bouyer, F.; Streng, M., Examples of CM curves of genus two defined over the reflex field, LMS J. Comput. Math., 18, 1, 507-538 (2015) · Zbl 1397.11103 · doi:10.1112/S1461157015000121
[10] Bisson, G.; Streng, M., On polarised class groups of orders in quartic CM-fields, Math. Res. Lett., 24, 2, 247-270 (2017) · Zbl 1417.11114 · doi:10.4310/MRL.2017.v24.n2.a1
[11] Gélin, A., Howe, E.W., Ritzenthaler, C.: Principally polarized squares of elliptic curves with field of moduli equal to \(\mathbb{Q} \). In: Proceedings of the Thirteenth Algorithmic Number Theory Symposium. Open Book Ser., vol. 2, pp. 257-274. Math. Sci. Publ., Berkeley (2019) · Zbl 1517.11063
[12] Narbonne, F.: Polarized products of elliptic curves with complex multiplication and field of moduli \(\mathbb{Q} \). preprint, arXiv:2203.11982 (2022)
[13] Louboutin, S., Explicit lower bounds for residues at \(s=1\) of Dedekind zeta functions and relative class numbers of CM-fields, Trans. Am. Math. Soc., 355, 8, 3079-3098 (2003) · Zbl 1026.11085 · doi:10.1090/S0002-9947-03-03313-0
[14] Murabayashi, N., The field of moduli of abelian surfaces with complex multiplication, J. Reine Angew. Math., 470, 1-26 (1996) · Zbl 1001.14016 · doi:10.1515/crll.1996.470.1
[15] Park, Y-H; Kwon, S-H, Determination of all non-quadratic imaginary cyclic number fields of \(2\)-power degree with relative class number \(\le 20\), Acta Arith., 83, 3, 211-223 (1998) · Zbl 0895.11047 · doi:10.4064/aa-83-3-211-223
[16] Kılıçer, P.: The CM class number one problem for curves. PhD thesis, Université de Bordeaux and Leiden University (2016). https://openaccess.leidenuniv.nl/handle/1887/41145
[17] Kılıçer, P.; Labrande, H.; Lercier, R.; Ritzenthaler, C.; Sijsling, J.; Streng, M., Plane quartics over \(\mathbb{Q}\) with complex multiplication, Acta Arith., 185, 2, 127-156 (2018) · Zbl 1409.14051 · doi:10.4064/aa170227-16-3
[18] Somoza, A.: Inverse jacobian and related topics for certain superelliptic curves. PhD thesis, UPC Barcelona and Leiden University (2019). https://scholarlypublications.universiteitleiden.nl/handle/1887/70564
[19] Shimura, G., Taniyama, Y.: Complex Multiplication of Abelian Varieties and Its Applications to Number Theory. Publications of the Mathematical Society of Japan, vol. 6, p. 159. The Mathematical Society of Japan, Tokyo (1961) · Zbl 0112.03502
[20] Lang, S.: Complex Multiplication. Grundlehren der Mathematischen Wissenschaften, vol. 255, p. 184. Springer, New York (1983). doi:10.1007/978-1-4612-5485-0 · Zbl 0536.14029
[21] Louboutin, S., On the class number one problem for nonnormal quartic CM-fields, Tohoku Math. J., 46, 1, 1-12 (1994) · Zbl 0796.11050 · doi:10.2748/tmj/1178225798
[22] Shimura, G., On abelian varieties with complex multiplication, Proc. Lond. Math. Soc., 34, 1, 65-86 (1977) · Zbl 0445.14021 · doi:10.1112/plms/s3-34.1.65
[23] Streng, M.: Complex multiplication on abelian surfaces. PhD thesis, Leiden University (2010). https://openaccess.leidenuniv.nl/handle/1887/15572
[24] Uchida, K., Relative class numbers of normal \({\rm CM}\)-fields, Tohoku Math. J., 2, 25, 347-353 (1973) · Zbl 0268.12003 · doi:10.2748/tmj/1178241335
[25] Washington, L.C.: Introduction to Cyclotomic Fields Graduate Texts in Mathematics, vol. 83, p. 389. Springer, New York (1982). doi:10.1007/978-1-4684-0133-2 · Zbl 0484.12001
[26] Tchebichef, M.: Mémoire sur les nombres premiers. J. Mathématiques Pures et Appliquées, 366-390 (1852)
[27] Goren, EZ; Lauter, KE, Genus 2 curves with complex multiplication, Int. Math. Res. Not. IMRN, 5, 1068-1142 (2012) · Zbl 1236.14033 · doi:10.1093/imrn/rnr052
[28] Cohen, H.: Advanced Topics in Computational Number Theory. Graduate Texts in Mathematics, vol. 193, p. 578. Springer, New York (2000). doi:10.1007/978-1-4419-8489-0 · Zbl 0977.11056
[29] The Sage Developers: SageMath, the Sage Mathematics Software System (Version 9.1). (2020). http://www.sagemath.org
[30] Streng, M.: An explicit version of Shimura’s reciprocity law for Siegel modular functions. preprint, arXiv:1201.0020 (2012)
[31] Streng, M.: RECIP—REpository of Complex multIPlication sage code. https://bitbucket.org/mstreng/recip (2014)
[32] Bach, E., Explicit bounds for primality testing and related problems, Math. Comput., 55, 191, 355-380 (1990) · Zbl 0701.11075 · doi:10.2307/2008811
[33] Kohel, D., et al.: ECHIDNA algorithms for algebra and geometry experimentation. https://www.i2m.univ-amu.fr/perso/david.kohel/dbs/index.html
[34] PARI: PARI/GP Computer Algebra System (Version 2.11.2). (2020)
[35] Kılıçer, P., Streng, M.: CM class number one (genus 2). SageMath code, https://bitbucket.org/pkilicer/cm-class-number-one-genus-2 · Zbl 1496.14026
[36] Louboutin, S., CM-fields with cyclic ideal class groups of \(2\)-power orders, J. Number Theory, 67, 1, 1-10 (1997) · Zbl 0881.11078 · doi:10.1006/jnth.1997.2179
[37] Neukirch, J.: Algebraic Number Theory. Grundlehren der Mathematischen Wissenschaften, vol. 322, p. 571. Springer, New York (1999). doi:10.1007/978-3-662-03983-0. Translated from the 1992 German original and with a note by Norbert Schappacher, With a foreword by G. Harder. doi:10.1007/978-3-662-03983-0
[38] Milne, J.S.: Jacobian varieties. In: Arithmetic Geometry (Storrs, Conn., 1984), pp. 167-212. Springer, New York (1986) · Zbl 0604.14018
[39] Milne, JS, Abelian varieties defined over their fields of moduli, I. Bull. Lond. Math. Soc., 4, 370-372 (1972) · Zbl 0256.14017 · doi:10.1112/blms/4.3.370
[40] Milne, J.S.: Correction: “Abelian varieties defined over their fields of moduli. I”. Bull. Lond. Math. Soc. 6, 145-146 (1974) · Zbl 0284.14017
[41] Shimura, G.: Introduction to the Arithmetic Theory of Automorphic Functions. Publications of the Mathematical Society of Japan, vol. 11, p. 271. Princeton University Press, Princeton (1994). Reprint of the 1971 original, Kanô Memorial Lectures, 1 · Zbl 0872.11023
[42] Mestre, J.-F.: Construction de courbes de genre \(2\) à partir de leurs modules. In: Effective Methods in Algebraic Geometry (Castiglioncello, 1990). Progr. Math., vol. 94, pp. 313-334. Birkhäuser Boston, Boston (1991) · Zbl 0752.14027
[43] Bouyer, F., Streng, M.: Reduction of binary forms. SageMath code, https://bitbucket.org/mstreng/reduce/src/master/
[44] Lauter, K.; Viray, B., An arithmetic intersection formula for denominators of Igusa class polynomials, Am. J. Math., 137, 2, 497-533 (2015) · Zbl 1392.11033 · doi:10.1353/ajm.2015.0010
[45] Costa, E.; Mascot, N.; Sijsling, J.; Voight, J., Rigorous computation of the endomorphism ring of a Jacobian, Math. Comput., 88, 317, 1303-1339 (2019) · Zbl 1484.11135 · doi:10.1090/mcom/3373
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.