×

Counting points on smooth plane quartics. (English) Zbl 1507.11058

Authors’ abstract: We present efficient algorithms for counting points on a smooth plane quartic curve \(X\) modulo a prime \(p\). We address both the case where \(X\) is defined over \(\mathbb{F}_p\) and the case where \(X\) is defined over \(\mathbb{Q}\) and \(p\) is a prime of good reduction. We consider two approaches for computing \(\#X(\mathbb{F}_p)\), one which runs in \(O(p\log p\log\log p)\) time using \(O(\log p)\) space and one which runs in \(O(p^{1/2}\log^2p)\) time using \(O(p^{1/2}\log p)\) space. Both approaches yield algorithms that are faster in practice than existing methods. We also present average polynomial-time algorithms for \(X/\mathbb{Q}\) that compute \(\#X(\mathbb{F}_p)\) for good primes \(p\le N\) in \(O(N\log^3 N)\) time using \(O(N)\) space. These are the first practical implementations of average polynomial-time algorithms for curves that are not cyclic covers of \(\mathbb{P}^1\), which in combination with previous results addresses all curves of genus \(g\le 3\). Our algorithms also compute Cartier-Manin/Hasse-Witt matrices that may be of independent interest.

MSC:

11G40 \(L\)-functions of varieties over global fields; Birch-Swinnerton-Dyer conjecture
11G20 Curves over finite and local fields
11Y16 Number-theoretic algorithms; complexity
14G10 Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture)

Software:

GitHub; SageMath; Magma

References:

[1] Achter, J.D., Howe, E.W.: Hasse-Witt and Cartier-Manin matrices: A warning and a request, Arithmetic Geometry: Computations and Applications, Contemporary Mathematics 722 1-18, (2019) American Mathematical Society. doi:10.1090/conm/722/14534. arXiv:1710.10726v5 · Zbl 1439.11145
[2] Adleman, L.M., Huang, M.-D.: Counting points on curves and abelian varieties over finite fields. International Algorithmic Number Theory Symposium (ANTS I), LNCS 1122, 1-16, (1996) Springer. doi:10.1007/3-540-61581-4_36
[3] Victor, V.: Batyrev. Variations of the mixed Hodge structure of affine hypersurfaces in algebraic tori, Duke Math J. 69 (1993). doi:10.1215/S0012-7094-93-06917-7
[4] Bosma, W.; Cannon, J.; Playoust, C., The Magma algebra system. I. The user language, J. Symb. Comput., 24, 235-265 (1997) · Zbl 0898.68039 · doi:10.1006/jsco.1996.0125
[5] Bostan, A.; Gaudry, P.; Schost, É., Linear recurrences with polynomial coefficients and application to integer factorization and Cartier-Manin operator, SIAM J. Comput., 36, 1777-1806 (2007) · Zbl 1210.11126 · doi:10.1137/S0097539704443793
[6] Castryck, W.; Voight, J., On nondegeneracy of curves, Algebra Number Theory, 3, 255-281 (2009) · Zbl 1177.14089 · doi:10.2140/ant.2009.3.255
[7] Castryck, W., Voight, J.: Nondegenerate curves of low genus over small finite fields. Arithmetic, Geometry, Cryptography, and Coding Theory 2009, Contemporary Mathematics 521 21-28, (2010) American Mathematical Society doi:10.1090/conm/521/10270. arXiv:0907.2060 · Zbl 1211.14035
[8] Costa, E.: Effective computations of Hasse-Weil zeta functions. Ph.D. thesis, New York University, (2015) https://www.proquest.com/docview/1711150592
[9] Costa, E.: PycontrolledReduction. GitHub repository. https://github.com/edgarcosta/controlledreduction (retrieved March 2021)
[10] Costa, E., Harvey, D., Sutherland, A.V.: SPQPointcounting, Jupyter notebook. https://cocalc.com/AndrewVSutherland/SPQPointCounting/ToyImplementation (2022)
[11] Fité, F., Kedlaya, K.S., Sutherland, A.V.: Sato-Tate groups of abelian threefolds: a preview of the classification. In: Arithmetic Geometry, Cryptography, and Coding Theory, Contemp. Math. 770 103-129. (2021) doi:10.1090/conm/770. arXiv:1911.02071 · Zbl 1497.11158
[12] Fité, F., Kedlaya, K.S., Sutherland, A.V.: Sato-Tate groups of abelian threefolds, doi:10.48550/arXiv.2106.13759 preprint · Zbl 1497.11158
[13] Flon, S., Oyono, R., Ritzenthaler, C.: Fast addition on non-hyperelliptic genus 3 curves. In: Algebraic Geometry and its Applications, Ser. Number Theory Appl. 5(2008), 1-28. doi:10.1142/9789812793430_0001 · Zbl 1151.14313
[14] Gathen, JVZ; Gerhard, J., Modern Computer Algebra (2013), Cambridge: Cambridge University Press, Cambridge · Zbl 1277.68002 · doi:10.1017/CBO9781139856065
[15] Gelfand, IM; Kapranov, MM; Zelevinsky, AV, Discriminants, resultants, and multidimensional determinants, Birkhäuser (1994) · Zbl 0827.14036 · doi:10.1007/978-0-8176-4771-1
[16] Harvey, D., A cache-friendly truncated FFT, Theor. Comput. Sci., 410, 2649-2658 (2009) · Zbl 1172.68065 · doi:10.1016/j.tcs.2009.03.014
[17] Harvey, D., Computing zeta functions of arithmetic schemes, Proc. Lond. Math. Soc., 111, 1379-1401 (2015) · Zbl 1333.11062 · doi:10.1112/plms/pdv056
[18] Harvey, D.; van der Hoeven, J., On the complexity of integer multiplication, J. Symb. Comput. (2017) · Zbl 1395.68152 · doi:10.1016/j.jsc.2017.11.001
[19] Harvey, D.; van der Hoeven, J., Integer multiplication in time \(O(n\log n)\), Ann. Math., 193, 563-617 (2021) · Zbl 1480.11162 · doi:10.4007/annals.2021.193.2.4
[20] Harvey, D., Massierer, M., Sutherland, A.V.: Computing \(L\)-series of geometrically hyperelliptic curves of genus three. In: Algorithmic Number Theory 12th International Symposium (ANTS XII), LMS J. Comput. Math. 19A, 220-234. (2016) doi:10.1112/S1461157016000383. arXiv:1605.04708 · Zbl 1404.11143
[21] Harvey, D., Sutherland, A.V.: Computing Hasse-Witt matrices of hyperelliptic curves in average polynomial time. In: Algorithmic Number Theory 11th International Symposium (ANTS XI). LMS J. Comput. Math. 17A, 257-273 (2014). doi:10.1112/S1461157014000187. arXiv:1402.3246 · Zbl 1296.11076
[22] Harvey, D., Sutherland, A.V.: Computing Hasse-Witt matrices of hyperelliptic curves in average polynomial time, II. In: Frobenius Distributions: Lang-Trotter and Sato-Tate Conjectures, Contemp. Math. 663 127-147 (2016). doi:10.1090/conm/663 · Zbl 1417.11121
[23] Nicholas M. Katz, Une formule de congruence pour la function \(\zeta \), in Groups de Monodromie en Géométrie Algébrique, Lecture Notes in Mathematics 340: 401-438. Springer (1973). doi:10.1007/BFb0060518
[24] Kedlaya, .S., Sutherland, A.V.: Computing L-series of hyperelliptic curves. In: Algorithmic Number Theory 8th International Symposium (ANTS VIII), Lecture Notes in Computer Science 487 119-162, (2009) Springer. doi:10.1007/978-3-540-79456-1_21. arXiv:0801.2778 · Zbl 1233.11074
[25] Macaulay, FS, The algebraic theory of modular systems, Cornell Hist. Math Monogr. (1916) · JFM 46.0167.01 · doi:10.3792/chmm/1263317740
[26] Manin, J.I.: The Hasse-Witt matrix of an algebraic curve. In: Fifteen Papers on Algebra, Amer. Math. Soc. Transl. 45 245-264, (1965) translated by J.W.S. Cassels doi:10.1090/trans2/045 · Zbl 0148.28002
[27] Pila, J., Frobenius maps of abelian varieties and fining roots of unity in finite fields, Math. Comp., 55, 745-763 (1990) · Zbl 0724.11070 · doi:10.2307/2008445
[28] The Sage Developers, SageMath, the Sage Mathematics Software System Version 9.4, available at https://www.sagemath.org, (2021)
[29] Stichtenoth, H., Algebraic Function Fields and Codes (2009), New York: Springer, New York · Zbl 1155.14022 · doi:10.1007/978-3-540-76878-4
[30] Stöhr, K-O; Voloch, JF, A formula for the Cartier operator on plane algebraic curves, J. Reine Angew. Math., 377, 49-64 (1987) · Zbl 0605.14023 · doi:10.1515/crll.1987.377.49
[31] Schoof, R., Elliptic curves over finite fields and the computation of square roots mod \(p\), Math. Comp., 44, 483-494 (1985) · Zbl 0579.14025 · doi:10.1090/S0025-5718-1985-0777280-6
[32] Sutherland, .V.: Order computations in generic groups, PhD Thesis, Massachusetts Institute of Technology (2007) https://dspace.mit.edu/handle/1721.1/38881
[33] Andrew, V., Sutherland, A generic approach to searching for Jacobians, Math. Comp., 78, 485-507 (2009) · Zbl 1208.14020 · doi:10.1090/S0025-5718-08-02143-1
[34] Sutherland, A.V.: A database of nonhyperelliptic curves over \(\mathbb{Q} \), Thirteenth Algorithmic Number Theory Symposium (ANTS XIII), Open Book Series 2 443-459 (2019). https://msp.org/obs/2019/2-1/p27.xhtml. arXiv:1806.06289 · Zbl 1516.14058
[35] Sutherland, A.V.: Counting points on superelliptic curves in average polynomial time. In: Fourteenth Algorithmic Number Theory Symposium (ANTS XIV), Open Book Series 4, 403-422 (2020). doi:10.2140/obs.2020.4.403. arXiv:2004.10189 · Zbl 1472.11322
[36] Tuitman, J.: Counting points on curves using a map to \(\mathbb{P}^1\). Math. Comp. 85, 961-981 (2016). doi:10.1090/mcom/2996. arXiv:1402.6758 · Zbl 1402.11096
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.